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ABSTRACT \

In the present book three main topics are contained: 1) the gen-
eralized plane stressed state of anisotropic plates; 2) the bending of
anisotropic plates, and 3) the stability of unisotropic plates. The
majority of the solutions set forth in the book (particularly in the
chapters devoted to the planc problem) is due to the author hirmself .
'‘All problems discussed are only concerned with small elastic strains
of plates. The problems connected with the plastic plate deforma-
tions, with the behavior of the plates after the stability has been
lost, with temperature and other stresses in plates, etc., art not
treated in the book. These problems are still waiting for their
investigators. The material on the problem of transverse vibrations
of anisotropic plates which is known to the author is collected In

a special chapter., 1In view of the rather great material and the small
volume of the book the author endeavored to set forth things as con-
cisely as possible. The main attention was paid to the practical

side of the solutions presented; formulas and conclusions having
theoretical interest only Jere mostly given without derivation, with
indication of the literature where interested readers may find o
detailed discussion and proofs, In those cases where this was possi-
ble and interesting for the practice the results are brought into the
form of theoretical formulas, diagrams, anc tables,
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FROM THE PREFACE TO THE FIRST EDITION

Present-day teechnolopy makes use of anluolropic plactes, i.e.,

plates with different resistance to mechanical action: in different di-
rections, as consiructional elemente. To cuch pluates belongr nlates made
of' aviation plywood, delta wood, texolite, and a number of other mater-

1als. The experimental investipations of such a material as plywcod show

the great difference between the moduli of elasticity and the flexural

rigidities for the principal directions — along the grains of the cas-

ings (the external plywood layers) and across the grains. Cbviously, it

is not correct to calculate plywood plates for the sace of simplicity
with the help of formulas derived for the isotropic bedy; it 1s neces-
sary to derive special formulas on the basis of the theory of elasticity
of the anisotropic body for the calculaticns. Also those plates in which
the difference betweer the flexural rigidities for different directions L
has been created artificially may be regarded as anisotropic ones, as

corrugated plates or plates reinforced by corrugation, plates reinforced

by tightly located stiffening ribs, etc. Not only the constructor, but
also the physicist who works with plates cut out of crystals, e.g.,
with quartz plates, must encounter on the calculation of stresses and
strains in anisotropic plates.

The author of this work set himself the task of creating such a

bo. +which would possibly cover most of the present-day investigations

of problems concerning the strain of anisotropic plates and which could
serve as a means of instruction for engineers, constructors, physicists,

and other specialists working with anisotropic plates. 1

-1 - ;
FTD-HT-23-608-67 |




i

g et bbbk

et pala ey

w Luasfas ok Dl 10 SO = =3

=T

P T DTN TR VS S AL I ,\:',‘_:\_-@n- o T O T PRI 21T AP Tl T | i JORLTY SO

in the proo nt
eralizsd plane ctpeeo e b st o el o e
anisotropic rlates, and
Jority of the colut i oot popth Tt
ters dovotbed too v S T T SR T

AT prob e 880" Whao o © 8 °pg° '
strain: or viaton
format oo, , with oo | ‘ i
lost, witvi, .y P : o

treated n o . 2 0

gators. 'Th- ot o v o

tropic pliater vl ) Sy b NIRRT
chapter.

In vice ot RN f aao” o
boox the tthor o A { b

The main attention woa val o vo U gt
sented; forrmla. ani conclusieons buvin
mostly given without derivation,

1

where interested readers oy

those cascs where thic was pousible ond interer

the results are broucht into the {forn of
and tables.

May 1944

FTD-HT-23-608-67

it e ke e e

boor thiree main Lop fen

[
:
.

!
'

theoretical formular

eyt den s

el Lo i

+ 0
, ’ . o
f
.
.
)
0 ’
:
i
v 4 ‘
i I
SIS .
Voo
N L3
1 1 i
t L.. bl

tfor Lhe practs

)

o il

S.G. Leknndtok iy

e

it

e

PO

4 20 g syl atmm el e ol 94




PREFACE TC THEL SECOND EDITION

oo theeory ot sberine aand ctreccen in anisotroplce plates has been
nuterours new investipations auring the time which has
clupced aftor the Ly whes the firct edition of the monograph "Aniso-
trople plato " (L-B7) e ut. A preat part of these investigations
carricd out , abcve all, in the USSF and, in particular, by the author
Nimeel? ref vs ¢ the plane problem  and 4 smaller part to the theory
of bending and stability plates.

Whoen preparing the sceond editlion the author endeavored to present
in tae book. If porsible, all new results known to him referring to an-
Ivotvoris vrates and beinr o7 practical anc theoretical interest. As a
result Lhie velume of the book has increased compared to the first edi-
tion. £ new chapter (in the second edition Chapter §) has been added,
it is devoted to an approximate method of studying the stresses in an-
isotropie plates weakened by holes which are nearly round or elliptic.
In porticular, the cases of holes similar to an equilateral triangle
and to a square with rounded angles, etc., were considered. Approximate
formulas for the determination of stresses near such holes in plates
strained by arbitrary forces, and, in particular, by stretching forces
and bending moments are pgiven; the results of calculating the stresses
with different degrees of accuracy in plates with given elastlc con-
stants are presented. Nearly all remaining chapters are supplemented
by sections setting forth the results of the most recent investigations,
as well as of a number of investigations of practical interest which
had, however, not entered the first edition. In Chapter 3, e.g., which
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1s devoted to the bendine of bearm: and caprs b de b pooon o oGl
ing are riven, and, in narticular, toe onnti, B o BE°
in Chapter U, problem: of the ¢ Tast e o oon g e @

gion Is limited by o varabola o o Voo o

:
tribution of otircroe, in an intiy e " 83
centrated moment e Teoveny s th e we ” s
ing with problems of v« luctic '
another material ar Pl b o b oo
of Lhe bending of arn niool g ! o
in Chapter 11, ~te, "n aecordoans c
nany of which have beorn vorlaed .
The wuthor endeavoar.d o voron
in a form which ¢ aceonzible o
ing them whore possild i1t e @4,
Tustratineg therm by calontaslon, o
censtants of three-loyver circn ;1w . o k
tion were revised: Lhe presontatioa :
vere corrected, and in a nunboer of ' ! ° o, 200 dBok
terial is set forth was chaneod., For all o b D ool
vestigated Ly the author himself and Lo bt Geao 1t flirsy

numerous calculations werc carried outt ancw (aul:c for threc-=layer |
plywood). As a result the corresponding diac-ram: of stresy distritog!
and the diagrams of a number of functions were repliced by new one:
more 1illustrative ones, compared to the diajyrams of the first cditic:.
The list of literature used was considerably increased.

Finally, I want to express my pratitude to T.V. Skvortsovaya who
has carried all numerical work and helped me in a substantial manner !u
the preparation of the second edition of the monograph.

December, 1956 S.G. Lekhnitskiy
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Chapter 1

THE BASTC EQUATIONS OF THE THEORY OF ELASTICITY OF AN ANISCTROPIC
BODY

‘1. TdE STRESSED STATE OF A CONTINUOUS BODY

When studyinge the stresses and atraing
ics, and, in particular, in plates, we shall concider the elastic body
Lo be a continuous bLody

ly accepted model.

Av in well known, the stressed state at a given point of a contin-

uous body which is at equilibrium or move:r undor the action of external

forces isc entirely devermined by the stress components acting on three
mutually perpendicular nlanes passing throuprh this point. Usually the

planes are passed perpendicular to the coordinate directions of an or-
thogonal coordinate system passing through the point in question. In

this book we shall only use Cartesian and cylindrical coordinates.

0 __-_1;_
\/'4
\
: tx(-——)-é
N 5 /ﬁ
Yz Tre
A
T Tor
Fig. 1

Referring the body to a Cartesian coordinate system x, y, z we
shall choose some point, pass three mutually perpendicular planes nor-

mal to the coordinate axes through it, and consider the stress compon-
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ents acting on these plianes (Mg 1), L 10 encrally aceceptea to desiy-
nate the normal components by the letter o vith a subneript indicating
the direction of the normal to the plane (and, therefore, also the di-
rection of the componcnt itselfl); the tanpential components are desl;-
nated by the letter 1t with two subscripts the first of which indicates
the direction of the component 1tself, and the second one the direction
of the normal to the plane. On the plane normal to the x axis act the

components: O Tyx, T,ps oD the plane normal to the y axis we have:

T., 0, T_ , und cn the plane normal to the 8 axis: 1_. ., T _, 0_. As
Ty Y 2y xz yz 2
is well known from the mechanics of continuous media, we have sz =

. T.., where 7 and g
Jt 1d

Tyz, L L Tyx = Txy and, generally, T =
are mutually perpendicular directions. If we know the stress components
on planes normal to the coordinate axes we can always determine the

stress on any oblique plane with a normal »n passing through the same

point. For this purpose serve the formulas

X,:=0, cos (ﬁ, x) {-z,c0s(n, y) {-7p.cos(n, 2), \
Y,:=5,,c08(n, x)-{-o, cos(n, y)-i-=,cos(n, 2), i (1.1)
Lpi-=%escos(n, x)-}-x,,cos (n, y) {-o, cos(n, 2),

where Xn, Yn’ Zn are the projections on the coordinate axes of the

stress acting on the oblique surface. Having determined Xn’ Yn Zn we
3

shall easily find (by projecting) the normal and the tangential compon-
ents of the stress on the plane with normal n.

Furthermore, we shall refer the body under consideration to a cy-
lindrical coordinate system r, 6, z in which the 2z axis coincides with
the 2z axis of a Cartesian system, and the angle & is counted from the =z
axis chosen as the polar axis. The stress components on planes perpendl-
cular to the directions of the r, 6, 2z coordinates of the cylindrical
system are shown in the same Fig. 1 (at another point); they are desig-

nated, respectively, by: Ops Tgps T T o} T T 0,5 where

zr’ rB6’ "6’ "z2§’ ‘"rz’ 8z
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' treapsition

from the ctress compon-
comy onents in cylindrical

with the help of the well known formulas:

- soeent b B0 2 vinfeosh, |
, Loty L 0 D vinficos B, I
(5, Vit b GosTh st ), (1.2)
y oy - inf, i
b vosh
1., .1‘. f

components oo continuous body which is at equilibrium

cquatlons which have the following form in the

coordinate aystem:

dap du,y Jtry
! ; | “ ’
e U dy ' e f-A -0,
%y, dsy dry, ,
ge Vogy bgp Y10, (1.3)
de ., dty, ds,
dx t dy t- g~ im 2

caquations in a cylindrical coordinate system will be

written in the form:

In Egs.

of the volume forces referred to the unit volume,

3, l () -

B o %0 o U B 2D e

01,5 1 an, 0‘8.- Qtre .

or bom o o b {-9

afrz _* { ()ngz ‘l ()3‘ {- e 7 »—-0 (l-u)
B el

(1.3) and (1.4) X, Y, Z and R, 0, 2 denote the projections

on the z, y, 2 and r,

0, 2 directions.

The equations of motion of a continuous medium differ from the

equilibrium equations only by the inertia terms pw

X owy, pW, O pW ., pW

pw, which must be substituted on the right-hand sides of (1.3) and (1.4)

instead of the zeroes (p is the density of the material and w with the

subscripts are the projections of the acceleration on the coordinate

directions.

In the theory o elasticity the projections of the acceleration

i dant ik a3 oah b ZaaBAL aad 2 L wd £
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are usually expressed in terms o thoe . L 0l 0 Lre opn !

of the body particles in the coordinsts Leoccory doeL . they are oy st
to the second derivatives with respeci o 3 foiie dicplacement r
jections). We shall desipgnate the projcstion: fothe displac-mont
the =, y, 2 and r, 0, = directions by u, v. w and Mo M. M

The strained state in the neighborhocd of a »wiven point of a Facs

tinuous body is characterized by the si:i strain compenentc: three roiu-
tive elongations which are designated by the letter ¢ with the correa: -
ponding subscript and the three relative shears designated by the let-
ter vy with two subscripts. In a Cartesian system we have the strain com-

ponents: € € , €, are the relative elongations of infinitely small

x’ Ty 2

sections, which were parallel to the z, y, z axes in the unstrained bvody,

Y the relative shears, i.e., the angles variations be-

and Yyz2 Yzzs Yoy

tween the mentioned sections. The strain components for a cylindrical

coordinate system will be €, €gs £, (the relative elongations for the

r, 8, z directions) and Yggs Y Y g (the relative shears).

rz’
The strain components are expressed in terms of the displacement
projections. If there are no restrictions as to the value of the strains

the connection between the €ps ey, 50D0GOGC s Y and u, v, w are given

2o

by the formulas
AR
AR
VL L

0:1 du Jdu du dw Jw

3

sin -:;T’_E_.i: dy i oy or T dy 0"___273/—_}2 ? (1.5)

[ (E AP T (M S :

ow du  Ou du , dv Juv , Jw | Ow

sin x tortaxer lax 0;_’_ 9: 0z

= (e (e :

du du dv Jdu ow dw

sin —-W—L‘T;_Fb?“@?_*‘gf'—dy—* ox

Ty = ——

(I Fe) (1 +ey)

- 8 -
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compared Lo

form:

uniity

v, U e dicplacementy

' ormulaus are simp ler and
. du ) du du ”
2 og e el by l
o du dut , du } -
v oy’ T do L oos (1.6)
. Ow di du l
€ * gzt v dy ’_L'.l“
small strains Chs Ego s Vg Ure cxprecsed in terms
in the followling way:
du, durg 1 Ou
b 7 90 Teseg, gy
1 dug | u, du, , du, .
R T T O A Rt (1.7)
__Ou, 10w, | dug  uy
L P T " an 1or T

The formulas and equations presented here are correct for any con-

tinuous body, elastic or not; their derivations may be found in courses

of the theory of elasticity.*¥

§2.

GENERALIZED HOOKE'S LAW

The equations given in §1 are not sufficient to solve problems of

equilibrium, motion, or stability of an elastic body. It is, in addi-

tion, necessary to indicate the relationship between the stress compon-

ents and the strain components, ana for this purpose some model reflect-

ing the elastic properties of the body must be chosen. If only small

strains are involved usually a continuous body obeying a generalized

Hooke's law is chosen to be such a model of an elastic body.

In all ca-

ses considered in this book we shall assume uinat a generalized Hooke's

law holds for the elastic body, and, in particular, for plates, or, in

other words, the strain components are linear functions of the stress

components.

An elastic body is called isotropic

if its elastic properties are

identical in all directions, and anisotropiec if its elastic properties

-9
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are different for different directions. Homogeneous we shall call an
elastic body with which the elastic properties are identical for all
parallel directions passing through any points, or, in other words, all
identical elements having the form of rectangular parallelepipeds with

parallel faces, chosen at different points of the body, have identical

elastic properties.

Let us first consider a homogeneous elastic body having an aniso-
tropy of general form where some elements of elastic symmetry are mis-

sing. Referring the body to an arbitrarily chosen orthogonal coordinate

system xz, y, 2 we may write the equations expressing the generalized

Hooke's law in the following form:
e; =00, a;,9 + ay40. - ATy + a7+ A1g%rye

S e ’ (2.1)
Tay =8zt a0y +- -+« o o + agetay

a1y, @yps --+» Ggg are here the elastlc constants (strain coefficients);

in general, the number of different constants is equal to 21.

When strained the body stores a reserve of potential energy. The
expression of the potential energy of strain referred to unit volume

(of elastic potential) may most simply be written in the so-called bi-

linear form:

o=
V == 7 (0,8, -}- 9%y ~}-o.e, o TyTye - %reTae -t T:rl/T:r]/)' ( 2.2 )

If we pass over to the stress components on the basis of Egs. (2.1) this

expression assumes the following form in the general case:

- 1 2

AT - 5 -} 5 . - -1 -1-

Vo= T | a”cx‘y | a3 0. | 3,5y | 0.5, ] a9 sy ]
1

+ Pl 0223521 -F A43%y°2 -+ iy y: -+ B0yt - 6%y 2y +

-+ %”uu”g LA AR S A

. L (2.3)

+ 7% e Fat, et gty
1

— 2 - :
- 3 a. s l—awta_:txy.-{-

1 2
-|- —2- aw':my .
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the whole body ic found by integrat-

Ineover voe ontire volwre of the body w:
V. ffdem. (2.“)

! 1f the internal structure of the body is symmetric symmetry is al-

o cboerved in its elactic properties. This elastic symmetry as it is

wsually called appears in the following way: at each point of the body

- e s =

svmmetric directions are detected [or which the elastic properties are

identical (equivalent directions). Crystals have an elastic symmetry;

all naturally occurring crystals are subdivided into nine classes ac-
cording to the character of the elastic symmetry. Elastic symmetry is
also observed in samples produced of natural wood, delta-wood, plywood,

and other anisctropic materials. If there is elastic symmetry the equa-

tiors of the generalized Hooke's law and the equation for the elastic

pctential simplify; some of the constants aij prove to be equal to zero,

and the rest is connected by relations.

We shall not deal with all possible cases of elastic symmetry, but

consider only themost important of them.*¥

1. The plane of elastic symmetry. Let us asswie that through each

poeint of the body passes a plane with the property that any two direc-

S e e YA i b e s

tions symmetric with respect to this plane have equivalent elastic pro- 3
perties (in a homogeneous body all these planes passing through various

points are parallel). If the z axis is passed perpendicularly to the

plane of elastic symmetry the equations of the generalized Hooke's law

will be written in the following form:

€r ‘“"“u%'i'”12%']‘”1:»":"'“16*:,/' 1
&y =010, |- Anoy |- ay0; b Ay,
e, ==0,,0; -} ayoy | oago:--ayt,, :
Tyz == Qg Tzt QygTan E
Tx: =:~at’otyz - optaa ( 2.5 ) i
Yoy = Medz - 0agTy |- 04g0: - AggTay '!
- 11 - J
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The number of independent elastic constants is reduced to 13.

The propertles of the body with a plane of elastic symmetry may
be 1llustrated more plausibly with the help of the following example.
Let us consider an element of the body in the form of a rectangular
parallelepiped with which two faces are parallel to the plane of symme-
try, and assume that stretching or compressive normal stresses o, are
applied to these faces (Fig. 2). The strain of the element will be
characterized by the relative elongations and shears which we shall

find from Egs. (2.5):

&, == 0;30;, Ty:=0- ]

&y = 023% g == 0, i ( 2.6 )

&; == 0gy0;, Tay = 036%;-

Hence 1t 1s evident that in the case of simple stretching or compression
in a direction perpendicular to the plane of elastic symmetry the angles
between the sections normal to the plane of elastic symmetry and the
sectlons lying in it are not distorted, but remain rectangular ones.
As a result, when stralned the chosen element assumes the shape of a

straight parallelepiped in which four faces are rectangles, and two

ok . parallelograms. If, however, there are no planes
% ~ of elastic symmetry the rectangular parallelepiped
(] ,?’L-;;- which 1s stretched or compressed in one direction
E/I;B?C-‘_ goes over into an oblique parallelepiped. The di-
6y ' rections which are normal to the planes of elastic
L symmetry will be called prinecipal directions of
Pig. 2

elastiecity or, briefly, principal directions. For
the symmetry case under conslderation one princi-

pal direction passes through each point. The crystals of monoclinal syn-

- 12 -
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gony (e.g., feldspar-orthoclase) have this form of elastic symmetry.

2. Three planes of elastic symmetry. If three mutually perpendicu-
lar planes of elastic symmetry pass through each point of a homogeneous
body the equations of the generalized Hooke's law referred to an x, y,
2 coordinate system with axes normal to these planes assume the form:

€ == A% -1 A0, |- Mgt Tyt 0Ty
&y == a3, -+ 1229y -+ @330, Tz = Gogtae f ( - )

e, == 0,30, -} 50, -1 a330: 2y = Geetay
The number of independent elastic constants is equal to nine. Through
each point pass three mutually perpendicular principal directions. A
homogeneous body with three mutually perpendicular planes of elastic
symmetry at each point is called orthogonally anisotropie, or, briefly,
orthotropic.

An element having the shape of a rectangular parallelepiped with
faces parallel to the planes of elastic symmetry which is chosen from
an orthotropic body remains a rectangular parallelepiped when it is
stretched or compressed in one direction (Fig. 2); under stfain the rib
lengths are varied, but the angles between the faces are not distorted.

Equations (2.7) acquire a higher plausibility if instead of the

strain coefficients aij the so-called technical constants are introduced:

the Young's moduli, the Poisson coefficients, and the shear moduli. Let

us rewrite (2.7) in the form:

[ —] .l_. G ~—- _'M ?_tll fe] = _l— <
z E ® Eqg ¥V E ¥ Ty Ugg ¥
—___ Yz . _l.- __Ya2 == _1_
zv = El Oz } ,2 oy Ea I e ,13 Too ( 2 . 8)
—_—m . Ym, 1_ — _1_
&, = E, Oz E, 9y {' Ea 9z T:ry i Gia Tzy

Eys By, E? are here Young's moduli for stretching (compression) along
the principal directions of elasticity =, y, z; Vio is the Poisson coef-
ficlent characterizing the contraction in the y direction if stretching

in the = direction takes place; Voq is the Poisson coefficient charac-

- 13 -
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terizing the contraction the z direction for a stretching in the y di-
rection, etc.; 023, 613, 612 are the shear modulil characterizing the
variations of the angles between the principal directions y and z, x
and z, x and y.* The following relationships hold between the Young's

moduli and the Poilsson coefficients owing to the symmetry of Egs. (2.7)
Epvgy =2 Epigy Epyy == By Epng = By (2.9)

The elastic constants of an orthotropic body which enter into the
equations of the generalized Hooke's law (2.7) and (2.8) as written for
the principal directions of elasticity x, y, 2z will be called principal
elagstic congtants (in constrast to the constants entering into the equa-
tions for an arbitrary coordinate system).

The form of elastic symmetry considered is the most important since
it occurs most frequently in practice. Such materials as wood with regu-
lar annual rings, delta wood and plywood may be considered homogeneous
and orthotropic. The crystals of rhombic syngony (e.g., topaz, baryta)
are orthotropic.

3. The isotropy plane. If a plane in which all directions are
equivalent with respect to the elastic properties passes through each
point of a body the equations of the generalized Hooke's law for a co-
ordinate system with a z axis normal to this plane will be written in

the following manner:

tx = all°m+ a,:9 -+ ago. Tyz = ATy . ] (2.10 )
ey == 305~} 0,0y -F Q% Yz =5 BT i *
e;=day (°:c+°y)'i'a:m°:' Ta’u’:Q(an—‘alz) Tay

The number of different elastic constants reduces to five. According
to A. Lyav, a body with an anisotropy of this form is called trans-

vergely igotropic*X ¥ The direction normal to the isotropy plane and all

~directions in this plane are principal ones. Introduclng technical con-

éfants Qé shall rewrite Egs. (2.10) in another form:

- 14 -
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1
Ty: == VoL

1

v
-3 = g7
4

v
E (OV — ) -~ EF% Ta2™™ G e

(2.11)

-+ T

v 1
"E'/'(Oa:"l cy)"l"E/' %o Ty = G

Fa's

Here E 1s Young's modulus for directions in the 1isotropy plane; E' 1is

Young's modulus for directions perpendicular to this plane; v 1s the
Poisson coefficient characterizing the contraction in the isotropy plane

for stretching in the same plane; v' is the Poisson coefficlent charac-

terizing the contraction in the isotropy plane for stretching in a di-

rection perpendicular to _t; G E/2 (1 + v) 1s the shear modulus for

the isotropy plane; G' i1s the shear modulus characterizing the distor-
tion of rhe angles between the directions in the isotropy plane and

the directilon perpe..iicular to 1it.

The crystals of the hexagonal system (e.g., beryl) are transversely
isotropic.

4. Full symmetry - isotropic body. In an isotroplc body any plane

is a plane of elastic symmetry and any direction a principal one. The

equaticns of the generalized Hooke's law for an isotropic body have the
form:

S N LR R I S

ey =10y — (s L e oo = s R

S N AR I A
E 1is here Young's modulus, v the Polsson coefficient and ¢ = E/2(1 + v)

the shear modulus. The number of different elastic constants is equal

to two.

If in studying the strains of an isotropic body we pass over from

the x, y, 2z coordinate system to any other orthogonal coordinate system

x!, 'y ' the form of Egs.

y (2.12) will rot change and the elastic con-

stants E and v will retain their numerical values also in the new system.
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Conversely, in the case of an anisotropic body, new elastic constants
aéj which are expressed in terms of the old ones will be obtained on

passing over from one coordinate system to another. A number of questions
connected with the conversion of elastic constants of anisotropic

plates in the transition to new axes will be illustrated in the follow-

ing.*

§3. CURVILINEAR ANISOTROPY

A homogeneous anisotropic body is, as was shown above, character-
ized by the fact that parallel directions passing through different
points are equivalent in it. Besides this kind of anisotropy which may
also be called rectilinear there 1s another form of anisotropy, the
curvilinear one. The latter 1s characterized by the fact that directions
subject to some other regularities rather than parallel ones are equiva-
lent in a body with such a curvilinear anisotropy. If a curvilinear
coordinate system is chosen such that at different points of the body
the coordinate directions coincide with the equivalent directions then
infinitely small elements of the body which are bounded by three pairs
of coordinate surfaces will have identical elastic properties. Converse-
ly, the elastic properties of elements having the form of identical
rectangular parallelepipeds with mutually parallel faces will no longer
be identical. The number of curvilinear anisotropy which in the follow-
ing will be called eylindrical anisotropy* occurs most frequently and
is most interesting for practical purposes.

The cylindrical anisotropy 1s characterized by the following. The
straight line g, the axis of anisotropy (itmay pass both inside or out-
side the body), is rigidly connectad with the body having cylindrical
anisotropy. All directions intersecting the axis of anisotropy under a
right angle are equivalent among each other; all directions parallel

to the axis of anisotropy and all directions orthogonal to the first

- 16 -




two directions are, respectively, equivalent to each other. All infin-

itely small elements A4 A ., Singled out of the body by three

1° 722
pairs of surfaces: a) two planes passing through the axis of anisotropy,
b) two parallel planes normal to g, and c¢) two coaxial cylindrical sur-
faces with an axis coinciding with g (Fig. 3) have identical elastic
properties. When studying problems of equilibrium and motion of such
bodies 1t is most convenient to use a cylindrical coordinate system r,
8, 2, passing the z axis parallel to the axis of anisotropy g, and the
polar axls z from which the angles 6 are counted in an arbitrary manner.

The equations of the generalized Hooke's
law for a body with a cylindrical anisotropy
of general form, without any elements of elas-
tic symmetry, will have the following form in
the above indicated cylindrical coordinate sys-
tem:

e, = 0y,0, - % |- 030 -1 @y T - 04T - gt

R R B T eI 4 aa7 i (3.1)

......................

Fig. 3

The coefficients aij are the elastic constants;
the number of different elastic constants is equal to 21 in the general
case. We note that the equations of the generalized Hooke's law may also
be written for an arbitrary Cartesian coordinate system; they will have
the form (2.1), but the coefficients a; will no longer be constant,
but vary when passing from one point of the body to another. If, how-
ever, for a homogeneous body or, in other words, for a body with rec-
tilinear anisotropy the equations of the generalized Hooke's law Aare
written in an arbitrary cylindrical coordinate system r, 0, z,they
will have the form (3.1) in the general case, only the a; in them will
e functions of the angle 6.
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‘E In a body with cylindrical anisotropy there may also exist differ- f
'f ent elements of elastic symmetry. If at each point of the body there is ‘
E a plane of elastic symmetry normal to the axils of anisotropy g Egs.
5 (3.1) simplify and assume a form analogous to (2.5) since
; 8y == 0,5 == Gy, == 1y == gy == Qg == Qg == g == 0. (3.2}
If at each point there are three planes of elastic symmetry one of
which 1s normal to the axis of anisotropy, the other one passes through

the axis, and the third one 1s orthogonal to the first two axes then

Egs. (3.1) assume the same form as Eqs. (2.10) because a1 = Ayg =

; = a36 = ayg = 0. In this case the body may be called an orthotropic body
' with cylindrical anisotropy. As in the case of a homogeneous orthotropic
body it is also here convenient to introduce "technical constants," and
then the equations of the generalized Hooke's law will be written in the

} following form for an orthotropic body with cylindrical anisotropy:

i —_— __1_ Yor Ver 1

if YT ORSTROTES =gy |

4 . Yy 1 Vel 1

3 By == Eor’*"E'—e 09—-—-[-:.‘-.- 30 1= Grs Tra (3' 3)
- ?I_ Yo 1 1

4 8= E: °r'—E; °0+E~: S o= _G;J.tn-

Here Er, Ee, E'z are Young's moduli for stretching (compression)
along the r, 6, 2 directions, the radial, the tangential and the axial
directions (which, at the same time, are also the principal directions
g of elasticity); V.o is the Poisson coefficient characterizing the con-
E traction in the 6 direction when a stretching in the r direction is ap-
3 plied; etc; G G

02° Gre are the shear moduli characterizing the var-

iations of the angles between the 6 and z, r, and 2z and the r and 6

rz?

3
4 directions.

As an example of a body with cylindrical anisotropy we may use a
wooden block with regular cylindrical annual rings. If the inhomogeneity

is neglected itmay be considered to be an orthotropic body with cylin-

- 18 -
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drical anisotropy.¥* The pith line plays the role of the axis of aniso-

tropy g (Fig. U).

Cylindrical anisotropy may appear in metallic details as a result
of some technological processes, e.g., in drawing wires, in the produc-
tion of pipes, etc.

A body with cylindrical anisotropy may be formed artificially, by
constructing it from homogeneous (rectilinear-anisotropic) elements
with identical elastic properties. Let us, e.g., imagine a great number
of homogeneous anisotropic elements ("bricks"), homogeneous in their

elastic properties, in which two opposite faces form a small angle. If

Yomm-p==

a value 1is constructed from these elements, as shown in Fig. 5, it wilil,
as a whole, have the properties of a body with cylindrical anisotropy.
The axial directions of the elements in the vault equivalent to each
other will be the radial directions.

We shall once again return to this form of anisotropy in Chapters
2, 3, 8, and 9. We shall not consider othercases of curvilinear aniso-
tropy.
§4. BASIC EQUATIONS AND BASIC PROBLEMS OF THE THEORY OF ELASTICITY

The stressed state of an elastic body may be considered given if
the stress components acting on three planes normal to the coordinate

directions at an arbitrary point of the body (and at an arbitrary in-
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: stant of time 1f the motlon of the body is considered ) are known. The
, strained state is determined by the components of strain which depend
on the three projections of the displacement on the coordinate direc-
tions. Consequently, in order to have full information on the stress-

g strain state of a given elastic body which is acted upon by external

| loads nine functions must be determined: the six components of the
stress and the three projections of displacement. If we use a Cartesian
coordinate system Ops O T

T.., U, V, w are these unknown
xz2’ xy 279

functions of the z, y, 2 coordinates (and, in the general case, also

y.’ OZJ Tyz.’

of time t); we must have nine independent equations to determine thenm.

Let us concentrate our attention, for the sake of definiteness,
on the case of the equilibrium of a homogeneous anisotropic body. Add-
ing Eqs. (2.1) expressing the generalized Hooke's law to the equations
of equilibrium of a continuous medium (1l.3) we obtain a system of nine
equations called the fundamental one:

O3, Jtzy’
ox + dy

Otz
+ +X=0 ]

; e, = 0,0, 01,0, + 0,50, -+ a7y 0y Ta - Oyt (4.1)
% gy =0ty - o . oo + dutay,

4 Toy =010+ oy 4 - o o . o + g5ty

1 The connection between the strain components and the displacements of
projection is given by Formulas (1.6) in the case of small strains. If

% the body has elastic symmetry, then, obviously, instead of the general
equations (2.1) those corresponding to the given form of elastic sym-
metry must be taken [e.g., Egqs. (2.7) or (2.8) for an orthotropic body].

The nine unknown functions determining the stress-strain state of the

a2 o o P ol oo I £l i AT
A % .

body must be found by integrating the fundamental system (4.1) (or a
system equivalent to the fundamental one), taking account of the sur-

face conditions (boundary conditions). According to what is given just
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on the surface we distinguish between the first fundamental, the second
fundamental, and the mixed problem [which is sometimes called the third
fundamental problem of the statics of the elastic body*].

The first fundamental probilem. External forces are given on the

Z

surface; also the volume forces are given. Designating by Xn, Yn, "

the projections of the external forces referred to unit area, and by
n the direction of the normal to the body surface the conditions on

the surface may be written in thé form

cecos(n, x) |-z, cos(n, ¥)-|-tgcos(n, 2) == X, |
Ty Cos(n, x)-f-o,cos(n, y) -5y cos(n, 2)=: Yy, i (L4.2)
2p2C0s(n, x)-|-5 . cos(n, y)-f-o,cos(n, 2):=:Z,

Instead of the projections of the external forces on the coordinate
axes the projections of the forces on the normal n and on two directions
perpendicular to n, or, in other words, the normal and tangential stres-

ses may be given.

The second fundamental problem. The displacements are given on the

surface; besides, the volume forces are given. In thls case the boundary
conditions have the form
=4 wv=:vt, wesw', (4.3)
where u¥*, v¥*, w¥* are the given displacement components in the directions
of the x, y, 2z axes.
The mixed problem. On a part of the surface the external iorces

are given, and on another part the displacements. To the mixed problem,

tl however, also pertain, e.g., suvch problems where the tangential forces
| and displacements along the normal or the normal forces and the dis- %
placements in a tangent plane are ziven cn the surface, etc. H

The uniqueness of the solution of the equilibrium equations of the

elastic body for small strains (:f the straln components are linear

functions of the derivatives of the displacements) is established by ; g
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the Kirchhoff theorem.#

Somewhat different are the problems of the stability of elastic
bodies having the shape of rods, plates or shells. The main part of
the problem boils down to the determination of the critical loads for
which the form of equilibrium corresponding to small strains and loads
(the principal form) stops being the sole and a stable form of equili-
brium.

The fundamental system of the equations of motion of the elastic
body has the same form as System (4.1), but the equations of equilibrium
of the continuous medium must be replaced by the equations of motion.
In other words, on the right-hand sides of the first three equations

there will be found inertia terms rather than zeroes:
pWy == p W@=P%%. mmngﬁ.

In those cases where it is not possible toc obtain an exact solu-
tion of the problem of the theory of elasticity (owing to the difficul-
ties due to the determination of functions satisfying the differential
equations and the boundary conditions) approximate methods may be used,
and an approximate solution of the problem may be constructed with their
help. Among these methods the variational methods which are set forth
in detail in the book by L.S. Leybenzon play an important part. In the
following we shall use a number of approximate methods, among them one
variational method whose basis 1is the. principle of virtual displacements
and the theorem on the minimum of a certain integral following from it.

Those displacements in an elastic body are understood to be virtual
ones with which it remains continuous, but the boundary conditions are
satisfied on parts of the surface which are strained in a given way or
fixed, i.e., on those where the displacements are given. In other words,

displacements permitted by the geometrical connections superimposed on
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the elastic body are meant.

Let the body be at equilibrium under the action of the external
load. We shall set up the expression for 3 equal to the potential energy
of strain of the ehole body (expressed in terms of the displacement)
minus the work of the external forces, surface and volume ones:

d= J- J‘ Vdw-— J‘ J(X“" Y+t Z“w)ds.—- (b.b)

— j j. J(Xu -} Yv - Z'w) dw.

(the triple integrals will be taken over the whole volume of the body,
and the double one over that part of the surface where the forces are
given). Let us consider the expression for 3 in which u, v, w are un-
derstood to be the virtual displacements (among the virtual displace-
ments, however, there are also real ones which the body experiences
when it passes over from the initial state into the state of elasti.
equilibrium under the action of external forces).

On the basis of the principle of virtual displacements the follow-
ing theorem may be formulated: real displacements differ from all vir-
tual ones by the faet that they minimize the expresston for J.%

The simplest version of an approximate solution based on the use
of the above-mentioned theorem will be roughly outlined as follows.
Expressions for the displacements are sought in the form of sums with
undetermined coefficients by choosing the sum terms such that the dis-
placements satisfy the continulty conditions (on those parts of the
surface where they are given). The unknown coefficients are determined
by requiring that the expression for 3 be a minimum. Ultimately, the
problem boils down to determining the minimum of an algebraic integral
function of second degree with respect to the coefficients. In the same

way, an approximate solution for the elastic bocdy (of finite dimensions)
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carrying out simple harmonic vibrations with a frequency p may be ob-

talned, but 3 has to be replaced by the expression¥
=:J-T2 3. "2‘-‘[ j‘ J‘p(u?'l‘v’ - w?) dw (4.5)

in this case (T is the kinetic energy of the body).

Manu-
script
Page [(Footnotes])

No.

9 See, e.g., 1) Leybenzon, L.S., Kurs teorii uprugosti [Course
on the Theory of Elasticity], Gostekhizdat [State Publishing
House of Theoretical and Technical Literature], Moscow-Lenin-
grad, Chapters 1 and 2; 2) Lyav, A., Matematicheskaya teoriya
uprugosti [Mathematical Theory of Elasticity], ONTI [Unified
Scilentific and Technical Publishing House], Moscow-Leningrad,
1935, Chapters 1 and 2.

11 Various cases of elastic symmetry for anisotropic bodies in
general and for crystals 1in particular are considered in our
book "The Theory of Elasticity of an Anisotropic Body," Gos-
tekhlzdat, Moscow-Leningrad, 1950, Chapter 1. See also: Lyav,
A., Matematicheskaya teoriya uprugosti, ONTI, Moscow-Lenin-
grad, 1935, Chapter 6; Bekhterev, P., Analiticheskoye issle-
dovaniye obobshchennogo zakona Hooke'a [Analytic Investiga-
tion of the Generalized Hooke's Law, Parts 1 and 2, 1) pub-
lished by the author (lithographed), Leningrad, 1925; 2)
Zhurnal Russkogo fiziko-khimicheskogo obshchestva [Journal
of the Russian Physicochemical Society], 57, No. 3-4, 1926,
and 58, No. 3, 1926.

14 Sekerzh-Zen'kovich, Ya.I., K raschetu na ustoychivost' lista
fanery kak anisotropnoy plastinki [On the Calculation of the
Stability of a Plywood Sheet as Anisotropic Plate], Trudy
TsAGI [Transactions of the Central Aero'hydrodynamical Insti-
tute], No. 76, 1931, page 8. A system of "technical constants"
for the general case of anisotropy was proposed by A.L. Rabilno-
vich (see his paper "On the Elastic Constants and the

Stﬁength of Anisotropic Materials," Trudy TsAGI, No. 582,
1946) .

14 Lyav, A., Matematicheskaya teoriya uprugosti, ONTI, Moscow-
Leningrad, 1935, page 172.

16 The general formulas i.sed to transform the elastic constants
in the transition to another coordinate system are givan in
our book "The Theory of Elasticity of an Anisotropic Body}
Moscow-Leningrad, 1950, pages 33-45.
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Already Saint Venant and Volgt have paid attention to this
form of anisotropy: 1) B. de Saint Venant, Memoire sur les
divers genres d'homogeneite des corps solides [Treatise on
the Various Forms of Homogeneity of Solid Bodies], "Journal
de Math. pures et appl." [Journal of Pure and Applied Mathe-
matics], (Liouville), Vol. 10, 1865; 2) Voigt. W., Ueber die
Elastizitaetsverhaeltnisse cylindridrisch aufgebauter Koerper
[On the Elasticity of Cylindrical Bodies], "Nachrichten v.d.
Koenigl. Gesellschaft der Wissenschaften und der Georg-Augus-
tin Universitaet zu Goettingen [Bulletin of the Royal Scien-
tific Society and the Georg-Augustin University at Goettin-
gen], 1886, No. 16.

Mitinskiy, A.N., Uprugiye postoyannyye drvesiny kak ortotrop-
nogo materiala [The Elastic Constants of Wood as an Ortho-
tropic Material], Trudy Lesotekhnicheskoy akademii im. S.M.
Kirova [Transactions of the S.M. Kirov Lumber Technology
Academy, No. 63, 1948.

See, e.g., the book by N.I. Muskhelishvili, "Nekotoryye osnov-
nyye zadachi matematicheskoy teorii uprugosti' [Several Basic
Problems of the Mathematical Theory of Elasticity], Izd.

AN SSSR [Publishing House of the Academy of Sciences of the
USSR], Moscow, 1954, pages 65, 71, 72.

See, e.g., the above-mentioned course on the theory of elas-
ticity by L.S. Leybenzon, §118, pages 309-311.

Leyvebenzon, L.S., Variatsionnyye metody pesheniya zadach
teorii uprugosti [Variational Methods of Solving Problems of
the Theory of Elasticity], Gostekhizdat, Moscow, 1913.

See the mentioned book by L.S. Leybenzon, page 114 and his
"Course on the Theory of Elasticity," page 317.
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Chapter 2

THE PLANE PROBLEM OF THE THEORY
OF ELASTICITY OF AN ANISOTROPIC BODY

§5. THE GENERALIZED PLANE STRESSED STATE OF A HOMOGENEOUS PLATE

Let us consider an elastic homogeneous anisotropic plane plate of
constant thickness which is at equilibrium under the action of forces
distributed at its boundary, and of volume forces. We shall assume
that: 1) at each point of the plate there is a plane of elastic symme-
try parallel to the mid plane; 2) the forces applied to the boundary
and the volume forces act in planes parallel to the mid plane, are dis-
tributed symmetrically with respect to it and vary to a low extent with
the thickness; 3) the plate strains are small. The stressed state of
the plate working under the conditions mentioned 1s called generalized

plarne stressed state. The mid plane 1s not distorted under the strains

and remains plane.

Let us choose the mid plane to be the zy
coordinate plane, put the origin at an arbi-

trary point 0, and place the x and y axes ar-

bitrarily (Fig. 6). We shall introduce the
Fig. 6. designations: h is the plate thickness, Xs ¥
are the projections of the forces distributed
along the boundary, per unit area; X, Y are the projections of the vol-
ume forces per unit volume (Zn = 2 = 0 according to the assumption);

Ay75 Gggs +++s Age are the elastic constants of the material in the «,

Y, 3. coordinate system.
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In studying the generalized plane stressed state the values of the

components of stress and the displacement projections averaged over the

thickness are considereq: Ex, Ey, ?xy, 52, u, v, which quantities are

determined as integrals of the corresponding stresses and displacements

taken over the thickness and divid.d by the thickness:

h/2 ' h2 hrR 3
- 1 1 - ] :
Sy =g o, dz, o, Ty eyda <, g e da p
~h2 g —ha (5 1) ]
h/2 h/2 h'2
- 1 - - |
G, = - a.dz, — IR E vdz.
PR d u Jou vy J.
~h/2 —hr2 —hr2

The quantity Ez will be neglected compared to Ex, o, and T

For th

€ mean stresses and displacements it is easy to obtain five equa-

tions according to the number or unknown functions from the fundamentn1l

System of equations of equilibrium. Multiplying the first and the sec-

ond equation of the system (4.1) by dz/h we shall integrate both sides

of them over z from —h/2 to h/2; the same is done with the first, the

second and the sixth equations, éxpressing the generalized Hooke's law

(which in our case must be taken in the form (2.5)]. We shall then ob-

tain equations which are satisfied by the mean values:

R
o b+ X =0,

(5.2)
B ds, —
Tty H V=0

z == ay,0,~|- a0, —{—a,erw, l
y = 10, @550, ~}- QagToy

T:r[/ =049, '*" (12001/ —{' acora-y' J

@t ™

(5.3)

Here

M2 h/2
- 1 S 1
X———’TfXdZ, Y-Ff}’dz
-h2 .

are the mean (taken over the thickness) values of the volume forces,
and E;, E? and ?xy are the mean (taken over the thickness) values or
the strain components e@ual to: '
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If the external forces Xn’ Yn are given at the boundary of the
plate the boundary conditions will be found from the first two condi-
tions (4.2), by taking the mean of them), i.e., multiplying them by

dz/h and integrating over the thickness). Thus we obtain:

o, €08 (1; x)—}-;wcos(u, W= X, } (5.5)
;” cos(n, x)-|- Sy cos(it, y):: Y,
Here
hp2 hi2
o=t [ xds, 7,1 [y
nE »az, n= ) n dz.
-hr2 . —h/2

We shall assume that the volume forces have a potential U(x, y) in

terms of which they are expressed according to the formulas

Ql

g (5.6)

» -}_;="—

|

ola
o&

X=—

Q
<

The equilibrium equations will be satisfied by introducing the stress

function F(z, y) and putting:

L . &F
x=§;§‘+uy ,°y=a—a'+u' T.Ill:—dx'dy' (5.7)

al

Eliminating the displacements u and » from Eq. (5.4) by differentiation

we obtain the strain compatibllity condition

Feg | Oy  O%ay -
dy? + 0x1  0x0y —0 (5.8)

Substituting here the expressions for Ex, Ey’
and expressing the stress components in terms of F, we obtaln a differ-

ny from Egs. (5.3)

entlal equation which is satisfied by a function of the stresses

s i - IF A OF
%22 gt — 2020 gragy T+ (00 060) Gagm — 2816 grgy T G T = (5.9)

aU U o
=— (312 030) Gz + (10 -+ 020) 5355 —(@n +a) 5o (5.9)
If there are no volume forces we have instead of (5.9) the homogeneous

equation
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(5.10)

=

oHF
'*“an'Tyr:O-

In particular, for an orthotropic plate we obtain the following equa-

tion if we identify the directions of the x and y axes with the princi- i E

pal directions of elasticity* : 3
I 0F (1 24\ OF 1 0F :
5 ow G —E) wear e (5.11)

;2 E, are here Young's moduli for stretching (compression) along the

principal directions » and y; G = 612 is the shear modulus characteriz-

E

ing the variation of the angles between the principal directions z, y; ¥

v is the Poisson coefficient characterizing the contraction in

1~ V12
the y direction for a stretching in the x direction [see Egqc. (2.8)].

e

In order to study the stresses and strains in an orthotropic plate in §
which a generalized plane stressed state 1s realized it 1is sufficient , ;

to know only four of the nine elastic constants: El’ E2, G, vy In the

PO

following the x and y axes whose directions coincide with the principal !
directions of elasticity of the orthotropic plate will be called prin-

cipal axes.

With an isotropic plate E, = E, = E, G E/2(1 + v) and Eg. (5.11)

1 2

goes cver into a blharmonic one**

SETCS R X RO SO

V2y2F == 0, (5.12)
where
: 93 02
v2=-a-;n—+"o—y3'.
In detall, this equation reads as follows:

MF O4F NF
W—*‘Q.&W-{-W:O. (5013)

As far as the boundary conditions are concerned (which go over

into the conditions along the outline of the plane figure S lying on

the zy plane) they may be reduced, for given external forces, to giving
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the first derivatives of the functions of the stresses. Let the plate
region S be limited by an ocuter contour and one or several inner con-
tours (for the sake of generality we shall assume that the plate has
one or several openings, or, in other words, S is a multiply connected
region). The contour equations may always be given in parametric form
where the arc length s as counted from an initial point (0' on the out-
er contour, 0" on the inner one) 1is chosen to be the parameter:

x=x(s) y=y() (5.14)
We shall agree to call the counterclockwlse direction of passing along

the curve positive [both for the outer and inner one — see Fig. T¥*].

Then we obtain:

cos (n, x)-—=:'_:%§-, cos (n, y)—:-:;%.
n 1s the direction of the ocuter normals to the contours, the outer or
the inner one; for the outer contour the upper, and for the 1nner one
the lower signs. Substituting these expressions in the conditions (5.5)
and integrating over the arc s from the contoﬁr point chosen to be the

initial one to a variable polint we obtain the boundary conditions for

given external forces Xn, Yn in the form:

9 .—_Vn—uii ds -+ ,‘
dx J;(" . ds) Sa | (5.15)
g—f= (_-X,,—U—‘%)ds—{—cz

o] e, are here constants which can be fixed arbitrarily on one of the

1 °2
contours. After the stresses have been found we can find the displace-
ments by integrating Eqs. (5.3).
If the displacements u*, v* are given at the plate boundary we ob-
tain the boundary conditions from (4.3) by integrating them:
U=u', v=0". - (5.16)

'Iﬁ the following, we shall omit the dashes over the symbols for
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stresses and displacements in the consider-
ation of the generalized plane stressed

state, in order to simplify the denotation,

and understand 0. O , U, v to be the

s T
Y Ty
values of the stresses and displacements

obtained by taking the mean over the thick-

ness.

§6. PLANE DEFORMATION IN A HOMOGENEOUS BODY

The problem of plane deformation which is also reduced to the
plane problem (i.e., to a two-dimensional problem) has much in common
with the problem of the elastic equilibrium of a plate in a generalized
plane stressed state. Let us consider a homogeneous anisotropic body
having the shape of a long cylinder of arbitrary cross section which is
at equilibrium under the action of forces distributed along the side
surface, and the volume forces (Fig. 8). We assume that: 1) at each
point of the body there 1s a plane of elastic symmetry which is normal
to the generatrix; 2) the forces act in planes normal to the genera-
trix, and do not vary along the generatrix; 3) the strains are small.

I. is obvious that cross sections far from the ends may be consid-

ered plane; in this case they are all under the same conditions.

Putting
w:cu(n, ). vi-u(e, y), w:=0, (€.1)
we obtain
_Ou . du . Ou dv
fot oyt fvTioy Te gyl (6.2)

€ == Ty: == oz = 0.

The fundamental system (4.1) assumes the form:




e R e s e R e g i i

05, O3y

Otzy - O3y )
ox Hgy Y =0

€ == 31095+ Biooy -1 Bigtzy ]

!]/ = lqlzgz'*_ aggay—*— :jZGTl'V' i ( 6 . u )
Tay = P16%2 ~+ Bag9y - BosTays

9 = — a_l; (alﬁow+ Q20, -+ am-.zv), ]
Tv.._::'t:z:.o_ . (6.5)

Bij are here constants which may be called reduced strain coefficients;

they are connected with aij by the following formulas:

’ ai3a3
p(j—_-'-aij— aa: (6.6)
(. j=1, 2, 6).

Under the assumption that the external forces

have a potential, i.e.,

W U
X=_Hu Y=—o_yo (6'7)
Fig. 8 we obtain formulas which are completely analo-

gous to those obtained in the preceding sec-

tion¥*:
Apr aF ' Nne |
°a=ayi'+Uv °v=5;i'+up 1a:y=—m;) (6'8)

OtF F ' HF P HF
Bar gr — 2P gzgy 1 e+ P gzigys — Pz ap HPu g =

=—-(-.9u+ﬂ-.»=)g—"f—,]+(3m+f’:u)(%——'({!..+p.z):;y‘f. (6.9)

The boundary conditions reduce to the conditions at the counter of
the cross section and coincide formally with conditions (5.15) or
(5.16) for a plate in a generalized plane stressed state.

The formulas and equations given here do not take account of the
conditions at the ends of the cylinder; strictly speaking, they are on-
ly correct for an infinitely long cylinder. In the case of free ends

their influence on the distribution of the stresses may be taken into
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(S is the area of the cross section, I

account approximately, on the basis of the Saint-Venant principle ac-

cording to which statistically equivalent lcads applied to the cylinder ’
ends give rise to identical effects in all of its parts far from the
ends. Let the cylinder cross section have finite dimensions. We shall
put the origin of coordinates into the center of gravity and place the
x and y axes along the principal axes of inertia of the cross section.

Determining the stresses 0.5 O Txy without taking account of the con-

Yy
ditions at the ends we obtain according to Formula (6.5) the normal
stress in the cross sections. In speclal cases 1t may turn out that it
is equal to zero and then the conditions at the free ends will be ful-
filled. In the general case, however, the stresses o, in each cross
section (and, consequently, also at the ends) are reduced to a force P
directed along the geometrical axis (z), and to the moment with the
components M1 and Mo relative to the x and y axes.

In order to remove the "superfluous" forces and moments at the

ends we 1impose a distribution of stresses from force and moments equal

to the values of P, M1 and M2, but having opposite directions, on the

stress distribution for even deformation. In other words, the following
correction must be added to the stress o, as calculated from Formula
(6.5):

P M M

and I2 are the mcments of iner-

1
tia with respect to the principal axes of inertia z and y). If, howev-

er, the cylinder ends are rigidly fixed it 1s not necessary to add any
correction. With the help of the Saint-Venant principle we may verify

that the stress distribution in all parts of a cylinder of finite i
length, except for the zones in the neighborhood of the ends, will be

the same as in an infinite cylinder.
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¢ In view of the nearly full agreement of the fundamental equations

- and boundary conditions for the plane at stressed state and for the

. plane deformation (there is only a difference in the coefficients) both
problems are solved by the same methods. Having obtained a solution for
the plane stressed state we obtain in the same way also a solution for

the corresponding case of plane deformation.

§7. GENERAL EXPRESSIONS FOR THE STRESS FUNCTION
i: As was shown in the preceding sections the plane problem of the
| theory of elasticity boils down to determining a stress function F(z,

y) satisfying the differential equation of fourth order (5.9) or (6.9)
and the boundary conditions on the contours limiting the region, in the

} region S in the xy plane.

| For the sake of definiteness, wr shall consider the case of the

generallzed plane stressed state. If there are no volume forces the

function F satisfies the equation

OF OF OF oF 9'F
02 g~ 202 33 dy (28,24 ay) dxtoy: 2a, bx_d}'ﬂ'*" 4 gy7 == 0. (7.1)

This equation may be interpreted in a general form, by previously re-
writing it symbolically with the help of four linear differential oper-
ators of first order in the following manner:

D,D,D,D,F = 0. (7.2)

The symbol Dy (k = 1, 2, 3, 4) designates the operation

Bm . (7.3)

where W, are the roots of the characteristic equation

a4y p¢— 2a,0% -} (20,5 + ag) p? — 2ayep - 85 = 0. (7.4)

In the case of an orthotropic plate Eq. (7.4) referred to the principal

1 directions of elasticity assumes the form:
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pc,.*(%_. 2-,1)92.4}- -g;- = 0, (7.5)

The author has proved that for any ideal elastic body for which
the constants ajqs 2a12 + Agps ap, are finite and not equal to zero the
characteristic equation (7.4) (and the corresponding equation for the
plane deformation) may have either complex or purely imaginary roots,

and cannot have real roots.* Only limiting cases lead to an elimina-

tion:

1) ag, ==
=ay==0; 2) aps=ay==2a,-{-85==0a,=0, 3) a,=:0,==0;
4) a,, == Q,5== 2(112—*< Qgg = 020:0-

In the first case two vanishing roots are obtained, in the second case
all four roots are equal to zero, while in the rest of the cases two
or all four roots are infinite. In the following, if no special reser-
vation is made, we shall exclude the limiting cases from consideration
and always regard the roots M, as either complex or purely imaginary
numbers; for these roots we shall use the denotations Bo Bo e o

Two principal cases are possible according to the relationship be-
tween the elastic constants:

1) the roots of Eq. (7.4) are all different:

s ac 8, ppmey |, gy esa— Bl ey - o (7.6)

(e, B, Y, 6§ are real numbers, B > 0, § > 0);

2) the roots of Egq. (7.4) are equal in pairs:

p.l—-;"pzma—l-ﬁf, l:"—l =‘-=|I'2-"—=a‘—"i31 (3>0) (7-7)

For an isotropic plate

Bi==po=:l, p=sp=-——1, a:20, =1, (7.8)

The numbers My and Mo will be called the complex parameters of the
first kind of the plane stressed state (or, correspondingly, of plane
deformation) or simply the complex parameters. The complex parameters
may be regarded as numbers which to a certain degree characterize the
anisotrépy in-the case of the plane problem; their value can be used to
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indicate inhowfar the body deviates from an isotropic one for which al-
i ways p=p=1 |p|=|p|=1.

' If the material is orthotropic and the directions of the x and y
axes colncide with the principal directions of elasticity then a

16 -
= ay = 0 and the following three cases of complex parameters are pos-

sible (the 1limiting cases are excluded).
: Case 1: p, =8, p,=10l (the complex parameters are purely imaginary
and unequal).
Case 2: p,=p,=8 (the complex parameters are equal).
Case 3: p,=a+-Bl py=—a-}3u
Having rewritten Eq. (7.1) in the form (7.2) we may reduce its in-

i tegration to the integration of four first-order partial differential

equations.
In fact, if we put
DF =g;, D,DF =g, DQD;&DcF =8 (7.9)

we obtain the equation

J é '
] Dlg,E??_p,Ff%: : (7.10)

On integration we find
g =/i(x+p) (7.11)
where fl 1s an arbiltrary function of the variable z + Moy Furthermore,

from (7.9) obtain the equations:

7 ()
it
0 -0

OF -- OF

Ty T Regx 8

Integrating these inhomogen:ous equations one after another we ob-

tain the following expressions for F:

1) in the case of different complex parameters
Fe= Fy(x 4 v,9)-1- Fo (el m) -1- Fy(e - -1 Fole -l (7.13)
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2) in the case of complex parameters equal in pairs
Fe Pyl o) 1 d mn Fale fu) b - (7.14)
P FaGd g (e b ) Fo(x - w) "

(FJ, F2, F3, F4 are arbitrary functions of the variables xz + Hpy or
z gy,
The variables x + uky are complex, but not of the usual type x +
+ 1y, but more complicated or general. Introducing the designations
Zy=xobmW 2z Xobyay Zir=x-byy Ze==xodewy (7.15)
for them and bearing in mind that the stress function must be a real
function of the variables x and y we shall rewrite Eqs. (7.13) and

(7.14) in another form:
1) in the case of different complex parameters

F=2Re[F (z,) |- F,(2) (7.16)
2) in the case of complex parameters equal in pairs
F = 2Re [F,(2)-}- z,F, (2)) (7.17)

(Re denotes the real part of any complex expression.)

In particular, for an isotropic body 2z, = z + iy = z, 51 = z;

changing the designations of the arbitrary functions we obtain the

well-known expression¥:

F =Re[22(2)+7(2)). (7.18)

Sometimes it 1s more convenient to introduce new variables

zf::z-{-).,;. zé:_—-z—{—).z—é, (7.19)
where

o140y o
)‘l"' l——'lp;' )‘2“-—1.:1‘[&' (7'20)

These variables differ from 2 and 25 only by constant factors.
The numbers Al and A2 which depend only on the elastic constants, all
things considered, will be called complex parameters of the second kind
in contrast to My and PE For an isotropic body Al = Ag = 0; for an an-

isotropic body they are, in general, complex numbers whose absolute -
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values do not exceed unity. Designating arbitrary functions of the var-

iables zi and zé by Ol and 62 we shall rewrite the general expression

of the stress function in the case of unequal complex parameters in the
form

Foo2Re [0,(2) | 0,(23). (7.21)

If volume forces with a potential U act on the body the stress
function satisfiles, generally speaking, the inhomogeneous equaticn
(5.9) or (6.9). The general expression for this function will be writ-
ten as the sum of expression (7.16) [or, respectively, (7.17), (7.18),
(7.21)], and a speclal solution of the inhomogeneous equation; usually,
it is not very difficult to find this special solution. Also these cas-
es were in spite of the existence of volume forces the function F sat-
isfies the homogeneous equation (7.1) are possible. As an example the
problem of the distribution of the proper weight stresses in a homoge-
neous body may be used; in this case the volume forces have a potential

which depends linearly on the coordinates, hence all 1ts second deriva-

tives vanish.

§8. THE CONNECTION OF THE PLANE PROBLEM WITH THE THEORY OF FUNCTIONS
OF A COMPLEX VARIABLE

As shown by Formula (7.16) the stress function in the case of un-
equal complex parameters 1s expressed 1n terms of two arbiltrary analyt-
lc functions of complex variables z,==x-yy. z,=2x--p,y oOP z{::z%-h?,;}:
= z4—h§l(complicated or generalized). In the case of equal parameters
we obtain one complex variable a3, or zi.

If we know the expression for the functlion F 1t 1s easy to find
the expression for the stress components and then to obtaln also the

formulas for the displacements by integrating Eqs. (5.3) or (5.4).

Let us focus our attention on the case where the complex parame-
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1 ters are different, but there are no volume forces. Introducing the
r. designations
_dF d dby s d®
‘bl(zl):—.-l?z—:, 4)2(22)-.-—.?%, d):(z,);;l};—l‘-, (I)Z(Zz)*_“fj?f'- (8.1)

we obtain the following formulas with the help of expression (7.16):

o Tt 2Refuil(2) |- piba )l
o+ 2Re| M(2) |- ¥z, {-2) ';
oy 2ReDndl (1) | i (22)); P
. wiz 2Repy Dy (2,) - ply (2)]— wy - g, } d
F’ v:: 2Re|qD, (Z;)‘I'qZ'I'g(zg)l'f""x‘*‘v()' (8.3)
é Here we have introduced the denotations
py == a,pd -a,- Aty Pymra i g, --an, l
" (8.4)
qy == Ay, - %f;: S g gr= gy -t %,2 —= Oyt J
wy, Uy, v, are arbitrary constants due to the integration which charac- P
terize the "rigid" displacement of the plate, i.e., the displacement in
the zy plane without deformation (w characterizes the revolution, and ) ]
u,, v, the translatory displacement).*
The normal and tangential stress components on a plane with arbi-
trarily directed norral n will be found from the formulas:
3, = 05c0s?(n, x)~-a,cos?(n, y)-}23,,cos(n, x)cos(n, y). 8 . %
2y == (oy—0z) cos (n, x)cos(n, y)-{-7,,lcos? (n, x)—cos?(n, y)]. } (8.5) . 3
Substituting here the expressions for Ox’ g, T we obtain:
on == ZRe ([c0s (1, y)—-pycos(n, X)° Iy (2,) + - 3
~ Aleos(n, y) -pecos(n, X)) D2 (22)), . R
Sp == 2Re ([c05 (1, y) — by cos (. x)} X ; (8.6) o ‘
, .
Xleos (n, x)} 4y, cos(n, )] Ty (2y)
-+ [cos (1, ) —- pycos (n, )] X i
X lcos (n, x) { pycos (1, y)] 2 (22)). i
For the given external forces Xn’ Yn the boundary conditions assume the ;
form [see Formulas (5.15)]: . i
: i
3
¥
4
o
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2Rel Py (2)+ V() =5 [ Vydste,
- ° (8.7)

2Re [Py (2)4 w1y () = = [ X, ds ey

: . 0

If, however, the displacements are given we obtain the following bound-

ary condltions:

2Re [p, Py (2)) |- PPy (2)] =2 4 -} oy — g, }
2Re (g, P, (2;) b q,Py(2)] =2 0" —- 0x -, (8.8)

The equations given indicate the connection of the stress and dis-
placement components with the functions of the complex variables. In-

troducing the designations

xp==x--ay s By (8.9a)
yp==x-byy y by, (8.95)
then the functions ¢l and ¢2 may be considered to be functions of com-
plex variables of the ordinary type
Zy==x -1y, 2, == x,--1y,.
But if this point of view is adopted then the functions ¢1 and ¢2 must

not be determined in the same region S which 1s occupied by the plate
in reality, but, respectively, in some regions Sl and S2 obtalined from
S by affine transformation given by Formulas (8.9a) and (8.3b). Figure

9 8llustrates how regions §, and S, are obtained from S.

Ay

HH-t+ ==t -

Thus, the plane problem for an anisotropic body may be regarded as
the problem of determining the functions ¢l(zl) and ¢2(22) satisfying

- 4o -




the boundary conditions (8.7) or (8.8) in the regions §, and 5, (at
polnts of the contours of regions corresponding to one another in an

affine manner). In the general case this problem is rather complex, but

it 1s possible to indicate a number of special cases of regions for

AT IR o e o

which an exact solution can easily be obtained.

An investigation shows that the functions @1 and @2 must satisfy g

the following conditions within their regions¥:

1) if the region of the plate S is finite and simply connected

(the plate has no holes) then the functions @1 and @2 are holomorphic

and single-valued in their regions S, and S

1 25

2) if the region S is bounded by several contours or is an infi-
nite plane with a cut (the plate 1s weakened by holes), but the equiv-
alent vector (the resultant) of the forces applied to each of the con-

tours is equal to zero then the functions @1 and @2 are holomorphic and

single-valued in their regions S, and S

1 23

3) if the region S 1s bounded by several contours or is an infi-
nite plane with a cut (the plate has holes) and even if the equivalent
vector (the resultant) on one contour is not equal to zero then the

functions @1 and @2 will be multivalued. If, e.g., there 1s one hole in

the plate and at its boundary act forces whose resultant has the compo-
nents Px and Py then the functions @1 and @2 will increase by the in-

crements Al and A2 to be found from the following equations*¥* if we
pass around along any closed contour entirely lying in the region of

the plate and encircling this hole:

. ~ o, 1 :
B+ 8 Bl By, ’
. 4
- - p ?
Pod e Bp-t-py By By = -—._,;11, E
— — [4T)) P:u ayq Pl/ (8,10) :‘
e T N L T Ty o
l l l - l am P.‘Zt am Py ‘.’
~Al'*"—A2'*“—“A|"{';—A2- —_— 2, :1
By He Ky Ba ax h axy h |
- b1 - E
§
- J
5
!
i" e 1) e kit gt i, Al
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If we use the representation of the function F in terms of func-

tions of the complex variables zi and zé according to Formula (7.21) we
obtain instead of (8.2) and (8.3):
o= 2Re[pZ(1-}-2) o (z))4-p2 (1 42,) 2, (2

o,= 2Rel (1--1)¢l()- (1 -+2)25(zp) } (8.11)
":ry= - 2 Re h‘"l (1 + )‘1) ,‘?: (Z:) _‘ p'z (l -}— )\2) (?; (Z;)lf ]

u=2Re[p,9,(2]) 1 P2, (z)) —wy+-u,
v=2Re[q2,(2])-t 4,2, ()] -} 0x -} v, } {&.12)
We have here introduced the denotations
s»,(zp———(l'-w-.)—jf—;'. 9y ()= (1 A,)-“j—f;’-
9! (20) == Z.:_i. . B (2l e ;i:;z_ (8.13)

The coefficients Pys Pgs 97, 9, are determined from the preceding for-
mulas (8.4). The stresses o, and T on an arbitrary plane are found
from the formulas which will be obtained from (8.6) by replacing ¢1(zl)
and ¢é(z2) by, respectively, the quantities (1--))¢/(sy) and (V4 2) 95(2).
The boundary conditions for the functions @l(zi) and @é(zé) coincide
exactly with the conditions (8.7) and (8.8) for ¢1(z1) and ¢2(z2).
For an isotropic plate the well-known formulas of G.V. Kolosov and
N.I. Muskhelishvili¥* are obtained on the basis of the general expres-
sion (7.18):
0, — 05—+ 20ty == 220" (2)- - (2)). ] (8.14)
ozto, ==4Rel?'(2)];
2 (-t 1v) = 79 (2) — 29" (2) — § (2). (8.15)

Here ¢¢)=={(@; ¢, § are the functions conjugate to @' and y; u = G is

p— .

3
the shear modulus; A= §

<

is the Poisson coefficient.
For given external forces Xn, Yn the boundary conditions for the

functions 9 and ¥ assume the form:

o(2)4 23’ (7) + H(Z) = :tf(zx,,--- Y,)ds ¢ (8.16)
o 0

- U2 _
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(the upper sign must be adopted if the outer contour is considered, the
lower one 1if the hole contour 1s consldered; ¢ is the integration con-
stant).

If the displacements are given on the contour of an 1sotropic

plate then the boundary conditions may be written in the following

form:

¥ (2)-- 29" (2) — §(2) = 2 (u* + ). (8.17)

We shall not specially choose the case of complex parameters equal
in pairs; by replacing the variable and changing the contour of the re-
gion S for which the problem must be solved it boils down to the case
of an isotropic body.

The plane problem of the theory of elasticity of an anisotropic
body may be reduced to integral equations of well investigated types,
in which case various methods can be applied. The reduction of the
plane problem to integral equations made 1t possible to study the prob-
lems of the existence and uniqueness of 1ts solution with exhaustlve
completeness and to work out general methods of obtaining the solution
in the general case. These problems were treated in a number of papers.
S.G. Mikhlin considered the plane problem for a finite simply connected
region for given external forces and reduced it to a system of integral
equations with two unknown functions.* G.N. Savin investigated the case
of an infinite region with a cut (a plate with a hole).** D.I. Sherman
considered the case of a multiply connected region.**#* In subsequent
works D.I. Sherman reduced the plane problem for a multiply connected
region for given external forces to one integral equation with one un-
known function.**** The same problem for the case of given displace-
ments was investigated considerably later by T.B. Ayzenberg; not only

did he obtain an integral equation, hut he also solved it for the spe-

cial case of an anisotro. ate having the shape of a round disc. ¥
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The integral equation of the plane problem with one unknown function

was obtalned in a somewhat different way also in a work by I. Vekua.*
We must also mention the work by V.D. Kupradze and M.0. Basheleyshvili i
in which it is shown that the plane problem may be reduced to the de-
termination of the potentials of a simple or double layer; the densi-
tles of these potentials satisfy well-known integral equations.*¥* Those
solutions for simple regions which we shall present below were obtained

by comparatively simple methods not connected with integral equations

(we know, however, only one work in which the solution of a concrete

special problem was found with the help of integral equations — the

above-mentioned work by T.B. Ayzenberg). j
Finally, we must mention the optical method of investigating the

stresses in plates which are under the conditions of a generalized

plane stressed state. The optical method is very efficient if the i

stresses in isotropic bodies are to be studied (particularly in those

cases where it 1s cumbersome to seek the theoretical solution of a

s

plane problem); it is set forth in detail, e.g., in the well-known book
by Coker and Filon.*#*¥#¥* The problem of applying the optical method for
studying the plane stressed state of anisotropic bodies proves to be
considerably more complex and only a little work has been done in this
field, as yet. The most important i1'esults in this field, theoretical

and experimental ones, were obtained by V.M. Krasnovyy and A.V. Step-

anovyy. ####

§9. DETERMINATION OF ELASTIC CONSTANTS FOR A NEW COORDINATE SYSTEM
When studying the plane strussed state of an anisotropic plate one
may often encounter on the following problem: the elastlc constants are
known for some coordinate system x, y and the elastic constants for a
new system x', y' must be found where the new system 1s rotated with
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respect to the first one by an angle 9 (Fig.

10). For an orthotropic
plate usually the principal elastic constants are given; it may, howev-
er, prove that the use of the principal coordinate system is inconven-
ient, for some reason, such that the conversion of the elastic con-

stants and complex parameters is necessary.

The formulas for the conversion of

Ay
y' - the elastic constants may be obtained in
7 /e 77577 ;
S T’ the following way.¥#
s "\,l/'
; s ' Let us conslider the generalized
s 1Y b
) it z! > plane stressed state oi an anisotropic
; ' plate whose mid plane 1s chosen to be the
z
Fig. 10. xy plane. Let a; s be the elastic con-

stants for the x, y coordinate system,

and aéj the elastic constants for the new
axes x', y', rotated by an angle ® about the origin 0 with respect to
z, y. Assuming that in the zy plane there are no principal directions

of elasticity we have the equations of the generalized Hooke's law (for
stress and strain components whose mean values have been taken over the

thickness) and the expression for the elastic potential:

€p =7 @10, -k 2%, -+ Qg ]
€y == 19, - An3y -1~ gty i (9.1)
Toy == O1% -+ “20’;1 + gty

= 1

2 2
Vs 7{’11":'1‘ a,53,3, -+ axo°.n1ay+ '2° }-aag9y .ry'*‘"g‘aoﬁa./ (9.2)
For the new x', y' system we have:
’ —— AN -
e —-H”OI { 12 v '| alc :ty
, ,
Ey = alz x } 022 y-l azu .ry l (9 0 3)
4 l .
. Toy = xu x 11' 26y + 66" 'ry
V—*—l—a'o'z-{—a oo—}-a'o"t' + .
9 Yuzx 1272y 16 & xy
y ' v 12 / 12 .u
) azzoy + azu v ay -t 2 Qg oy (9 )
11 expres in terms of o', o', t! for which purpose
We shall press o_, oy, T 2 %y Try | purp
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we make use of the formulas (8.5) which in our case assume the form:

or -_-_-o;cos’q—{—o; sinz(?—Qt;ysin 9cos ¢,
SN TRy ’ 2 S
oy ==o sin?¢-}-o cos? v 427 singcos g, (9.5)

’

Tay = (o, — o;')'sin ©Cos ¢ -} ‘t;y (cos?o —-sin? o).

Furthermore, we substitute these values into the formula for the elas-
tic potential (9.2) and compare the expression obtained with (9.4).

Hence we find the sought formulas of the elastic-constant transforma-

tion in passing over to new axes:

aly == a,,c0st @ -} (20, - |- agg) sin? © cos? ¢ -}- ay, sint ¢ -}-
, -}- (a0 @ -} a,q sin® @) sin 24,

aiy =z ay, sint @} (2a,,-1- agg) sin? ¢ cos? @ -} ay, cost o —
— (@, Sin® ¢ -} a,cos®¢)sin2y,

M2 == ayg-t- (a1 0y — 20,15 = agy) Sin®  cos o -f:

-}- ; (aa5- (ryg)sin 2y cos 24,
4
g == Agg |- 4 (@, - g - 201, - agy) si? o cos?o - | (9.6)
. -2 (a5 — a,5)sin 29 cos 2
2 1 '
alg== [n22 sin?o - ay 08?9ty (20,51~ agg) cos 2’?] sin 29 +
+a,gcostp(cost g~ 3sin? o) |- aygsin? ¢ (3 cos? ¢ —-sin? ¢,
%6 == |UypcO8? % -~ ay, siL2 @ — i (2a,5-1- ag)cos2o]sin20 -1~
22 : 5 1 66 G ?

—+a;gsit2 ¢ (3cos? g sin? ¢) - ay5c0s? ¢ (cos? 5 - 3 sin? @).

We notice two invariants, i.e., two expressions which remain numerical-

ly equal on rotation by an arbltrary angle 9:

afi+ ak 4- 20l == ay; - a5 - 2”1?‘ (9.7)

‘ ale— 4ajs == agg— 4ay,.
If, in particular, the plate 1s orthotropic and the directions of
the z and y axes coincide with the principal directions of elasticity

the equations of the general Hooke's law (9.1) have the form:

(3 —_— _]_.o .._'_Vlo
z E, x E, Y’
R 1
g (9.8)
v E, °= l £y
1
Tay = 5 “av

Passing over to new axes z', y' we obtain the equations of the

generalized. Hooke's law (9.3), and introducing "technical constants'" we

T
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rewrite them in the following way:

1 v m 1
E; = EO;—'E,;‘a;/ }—?;T;y,
AP VR B (9.9)
E" —-—'—"ETOI'—{—E‘;O!/TT.;‘Txyn
- , . | |
1 2
T;y:—"b:r =t 3 y e J %
Eé, Eé are Young's moduli; vi, vé are the Poisson coefficients; G' is g
|
the shear modulus for the new directions; ni, né are the secondary co-
efficients which vanish in the fundamental system.* The moduli and co- ,
efficients for the new axes are determined by formulas resulting from
(9.6):
: __ll_ o C0s - (-l_ __2."‘.) sin? o cos? L‘a-|-fﬂ?—.
E| E, G E E,
1 sint ¢ 1 2\ . ., coste
— = ——=} (--- - --) sin?ycos? g |- 2221
E, E, G E E,
L Y L RN S 1 U :
=T 1 ( E| } B U)sm 20, |
o T T T R L 2], -;
v £ 4( E, £, )sm 29 . (9.10) ‘}
g v E{' . . '
2 1 E; :
feopr| S costy 11 2y 2] sin 9
’h"kx[ 5 E; { 2(0 ET)&OSzf].Slll 2¢,
__prfcosty sin? 9 1 /1 24 e
T] = EZ[TB—"‘— *-E'I—""- 2—(0-'—[‘:1‘)COS QT‘JSIH 2(‘9. J
i
The expressions
A 2, :
| ETE TR e (9.11) ‘é
l + VI ___ 1 4vl. . i
A A L
will be invariant. ¥
In practice, alsc the following problem may arise: in an ortho-
tropic plate the elastic constants aij referred to an arbltrary coordi- 2
nate system x,y are kKnown, and the principal elastic constants must ' i
i be determined. i
: The problem is sleed_with the help of the two last formulas of ;
. ! i
: o 3
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(9.6).

Let us designate the principal axes by x', y' and principal elas-
tlic constants by aéj in the given case. The unknown angle @ which is
formed by the x axls with one of the principal directions 1s determined
as the minlmum angle satisfying simultaneously the two equations:

aj,==0, aj; =0, (9.12)
which will be reduced to the following eguations after some simple

transformations:

g 20 = a-lay

ay--agy' .
tgdp=:2 — Q0" (9.13)
ay, -} Ty = 204y agg

The condition for the existence of identical solutions to these

two equations has the form:

(a,6— asg) (@), -— aza a5+ azg) (ayy —;022— Ay — Q) == (9.14)
= (a;5-} a25) (@} — az0) (@} 4 ap — 20y, — agg)-

If this condition 1s not fulfilled there are no principal directions in
the zy plane, i.e., the plate is not ortnotropic.

The formulas for the recalculation of the given constants of plane
deformation Bij in passing over to new axes are identical with Formulas
(9.6).

Example. Let us assume that we know the elastic constants of an
anlsotropic plate referred to an zy coordinate system, i1.e.:

Qg =ax,+0, a, ='a._,2. a,y -+ a0 —2a,,—agg > 0.
The condition of the existence of principal directions (9.14) is, obvi-

ously, fulfilled. Equations (9.13) assume the form:

tg2¢ =00, tgdo=0. (9.15)
From the first equation (9.15) we find: ?=b;,%?,gﬁ,%;,”, , and from
the second one:<?==m.;,%,%gln,; the solutions of the first equation

are also solutions of the second one. Consequently, we may put:92é§u

There are principal directions of elastici.y; they are the directions
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of the bisectrices of the angles between the z and y axes. We shall
determine the principal elastic constants aéj from Formulas (9.6) by

substituting in them the numerical values of the a; and ¢=7.

§10. THE CONVERSION OF THE COMPLEX PARAMETERS IN PASSING OVER TO NEW
AXES

If the complex parameters of the first kind My and Mo calculated

for the x and y axes are given it 1s not necessary in passing over to

the new axes z', y' to set up anew and to solve the fourth-degree equa- '
tion (7.4). It is not difficult to derive formulas from which the com-
plex parameters for any other coordinate system rotated with respect to
the first one by the angle ® can be calculated (see Fig. 10) if the pa-
rameters for the first system are given.

We shall write the equation for the stress function F in a symbol-

lc manner. In the o0ld z, y system we have:

D,D,D,D,F == 0, (10.1)
where
2 2 = /] - 0
Dk._-:_a?—.‘.llkﬁo}—' Dk'——-;—o—y""" p'k—ﬂ' (k == l, 2); (10.2)

s ﬁk are the roots of the equation

aput--- 20,03 -+ (2a,, - F age) p? - 20, If a,,:=0. (10.3)

We shall pass over to new axes x', y'; the transformation formulas have

the form (see Fig. 10):

xcoso-}-ysin g,
} (10.4)

x' ==
Y=o xsing |- ycoso.

Expressing the derivatives with respect to x and y in terms of the de-

rivatives with respect to z' and y' we obtain:

2 F) .
——=  COSQ 35— -|-sil ¢, |
ay gy’ ox7 190,58 | I;
2 ] %
o = sine 5y heos e G ;

Reducing by a constant factor wWe shall rewrite Eq. (10.1) in the

- 4g - !

PO G | =i o bt an b A AT a e e i bty a8 A A, 5 i et v hiba A A abal e b




T ¥ T T

TRT i g vl
Ly

form

At

D,DyD,D3F == 0, (10.6)
where
Dp—=-0 _pacosg—sg 0 0, 0
dy’ cosg-|-prsing  ox’ ay’ Tk
b-r_f__d__;kco_s_if-—slntg._g_____g_ =1 0 (10.7)
Koy T cosg-Fprsime o dy’ i

Hence we also obtain formulas from which the complex parameters

for the new axes will be determined#:

o Prcos @ —sing r__ Pacosg--sing
..*."l—cosqa-}-p,sln?' b == cos p-fpysing * (10.8)

Let us mention some important properties of the complex parameters
which are found from an analysis of formulas (10.8):

1) If the parameters Hys M, are complex numbers for some coordi-
nate system xz, y then also the parameters ui, ué for any coordinate
system z', y' rotated with respect to the first one by an angle ¢ will
be complex, or, in particular, purely imaginary numbers. Conversely, if
for some coordinate system the numbers Hys By proved to be real then
also the corresponding numbers ui, ué in an arbitrecy coordinate system
would be real numbers (which case 1s, however, excluded for an elastic
plate if limiting cases are not taken into account). ;v

2) If the parameters My and Mo for some coordinate system x, y
were obtained unequal then also the corresponding ui and ué for any
system z', y' rotated with respect to the first one by an angle ® will
be unequal. Conversely, if for some coordinate system 1t has turned out
that My = My then ui = ué for any other system.

3) If for some coordinate system one of the parameters proved to

be equal to © =v-=1 then for any other system rotated with respect to

the first one the corresponding parameter will be equal to 7, i.e., it

will not change in the transition from one coordinate system to anoth-

er.
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With an 1sotropic plate both parameters are equal to 7 for any co-
ordinate system as was already mentioned.

It 1s not difficult to obtain also formulas for the transformation
of complex parameters of the second kind in the transition to rew axes.
Let Al, A2 be the complex parameters of the second kind for the xz, y

coordinate system to be determined from Formulas (7.20), A!, AL the

1° 72
same quantities for the new system x', y' which is rotated with respect

to the first one by the angle 9:

_ 1} lp: \ — 1 +lp.;
= 7! A
U 1 —ip,

-I_—Tp’;. (10.9)
Substituting here the expressions from (10.8) we obtain the vervy
simple formulas
M = hye-%i, by == hpe—21, (10.10)

Since the absolute value of the complex number e 2%

is equal to unity
it follows that
il=Dul Dal=]xl, (10.11)

or, in other words, the absolute values of the complex parameters of
the second kind retain constant values in any rotated coordinate sys-
tem, i.e., are invariants.

The formulas (10.10) may be given a simple geometrical interpreta-
tion. Let for the coordinate system z, y Ak = Ek + ink and for the sys-

tem =', y' Ay = & + ing. From (10.10) it follows that

7 .
B == %, c0s 20 -|- 7, sin 2o,

7]2 ='=-'Ek5i“2'?"1'7lk€05 2,? (10.12)
(k==1, 2). )
If a complex plane &n 1is introduced the complex numbers Al and A2
will be represented on it by vectors with lengths ]All and |A2| which

begin at the origin of coordinates and, generally, have arbitrary di-

rections; the projections of these vectors on the £ and n axes are, re-

spedtiveiy, equal to El, nys and 52, UPY The formulas (10.12) show the
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transition to a new coordinate system z', y' rotated with respect to
x, y by an angle ® 1s equivalent to the transition to a new system &',
n', rotated by an angle 29 (Fig. 11) with respect to &, n. The real and
imaginary parts of Ai and Aé are determined as the projections of the
same vectors on the new axes &', n'.

To each form of anisotropy of a body in
the generalized plane stressed state or show-

ing plane deformation corresponds a couple of

completely determined vectors in the &n plane.

The lengths of these vectors are equal to IAll

and |A2|, and the angle between them ¥ has a
determined value 1f both moduli are different from zero, and become in-
determined 1f one of the moduli IAkI or both are equal to zero. Thus,
the anlsotropy of a body in the case of a plane problem may entirely be
characterized by the numerical values of three real quantities indepen-

dent of the choilce of the coordinate system, |A |A,] ana v.

11
The formulas expressing these quantities in terms of the real and

imaginary parts of the parameters of the first kind found for an arbi-

trarily chosen system of coordinates x, y have the form:
Ml o=/ B e
I)l""'l)l"""/- ;)3 l“’"l (10.13) ;1;
— U—8)3-fv2, ;
st =al =/ G
cos =~ (1 —a?—f2) (1 —2—22) |- day \
VT30 +a3) (- pp+ 2] (1400 + 1 [(1 - )2+ 3]
Sing = 2[(l—a?— ) y— (1 — 2 =) ] (10.1H)
AT s Fal] (L 3)* + T T(T=3)7 4 77)
In the case of the isotropic body |A;| = |A,] = 0, and ¥ has an
ﬁ undetermined value. In the limiting case where the anisotropy 1s ex-

pressed in the sharpest manner My and M, are equal to zero or infinity,

|X1| = |A2| =1, =0 (IAkl cannot be greater than one). If for some

coordinate system it has proved that yu., n, ave pure~ly imaglnary nvom-
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bers then the vectors expressing Al and A2 will have the same or oppo- {

site directions, and, therefore, ¢ = 0 or ¢ = ™.

§11. THE ELASTIC CONSTANTS FOR SOME ANISOTROPIC PLATES

Many research workers, among whom W. Voigt occuples an outstanding
position, were concerned with problems of the experimental determina-
tion of the elastic constants of various crystalline substances (miner-
als). The numerical values of the elastic constants for many minerals
are given, e.g., in the course on crystal physics by V. Voigt¥* and in
the work by Auerbach,¥** references on this problem are also to be found
in an article by Geckeler.*** l/ithout presenting here those data which
refer to crystals we shall give the numerical values of the elastic
constants for three anisotropic materials (plates) of noncrystalline

origin: for pine wood, delta wood, and plywood.

1. Natural wood (pine wood). Let us con-

0 @
i /i * sider & rectangular plate cut out of natural
L e /J"f;'
2 A
t 77 wood with regular annual layers, as shown in
[ ks
y S
N Iz Fig. 12. If the inhomogeneity and the curva-
Fig. 12. ture of the layers is neglected three planes

of structure symmetry can be distinguished in

it, which, at the same time, are also the planes of elastic symmetry;
one of them, yz, 1s normal to the wood fibers, the second (tangential) f

one, xy, 1s parallel to the planes of the annual layers, and the third

S b ar e

(radial) one, zz, is orthogonal to the first two planes. All planes
parallel to those mentioned are also planes of elastic symmetry, and

the wood may in first approximation be regarded as a homogeneous ortho-

PR Y T

tropic material. The equations of the generalized Hooke's law will be 3
written in the forms (2.7) and (2.8); nine different elastic constants

enter into them.***#%

B o o




Let a plate whose plane faces are parallel to the annual I=y=rs
(the plate is not necessarily rectangular) be in a generalized rlane
stressed state. The equations of the generalized Hooke's law which con-
nect the values of the stress and strain components whose mean values

have been taken over the thickness are then written as follows:

1 v
€ =0 ———-’-O,

—__M 1 .
&y __'i-:f":n'*“ﬁ_,"v' (11.1)
1

Tzy == -G Sap’

The x axls 1s here directed along the fibers; El is Young's modu- 1

lus for the stretching (compression) along the fibers; E, is Young's k
modulus for the stretching (compression) along the directions lying in
the plane of the annual layer and normal to the filbers; Vys V, are the
corresponding Polsson coefficients (El\)2 = E2v1); G 1s the shear modu-
i lus for the planes of the annual layers; the dashes by which the mean
3 values were designated are discarded. !
E We shall give the numerical values of the elastic constants from

Eqs. (11.1) for pine wood, taken from a work by A.L. Rabinovich¥*:

— R b3 2 = « . 5 2
E, =1-10%kg/cm@ E, = 0,042. 10 ka/cm} (11.2)

v, = 0,01, G=-0,075- 105kg /cnf

On the basis of these data we obtain the following values of the

complex parameters: :
B, = 3,261, gy == 1,501,
}.l=——-0,530, A, =-—0,198, } (11.3)
[\]=0,530, [),]==0,198, 4=0. ]

e T i S

If the x and y axes change places with one another we shall obtain:

Pl=0'307[' lJ-z ke O,GGS[| } (ll u) :
A, =0,530, 2,-20,198. ) !
If the elastlc constants for the principal directions are known, i.e., %

the longitudinal and the tangential one, we find the constants from

. formulas. (9.10)-and for an arbitrary direction in the zy plane. Thus,
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Young's modulus E@ for an angle @ with the x direction will be deter-

mined from the formula

| R RS B __ e, (11.5)
costp -] (~h.' .- 2':,) sin?p cos?y |- !f‘--sln‘; +5
U E’

Figure 13 shows the dlagram of the variation of E, with the vari-

q,.
ation of @ for pine wood taken from the mentioned work by A.L. Rabino-

vich (page 41).

2. Delta wood. Slablike delta wood is produced of a number of wood

layers (plywood) which have been impregnated by pressing in resin; one
layer whose fibers are perpendicular to those of the rest of the layers

is placed over ten layers with identical fiber direction.

In first approximation, a plate of delta wood may be considered to

be a homogeneous orthotroplic plate one plane of elastic symmetry of

which 1s normal to the fibers of the predomi ant direction, and the

second one is parallel to the mid plane. For a plate of delta wood in a

generalized plane stressed state the equations of the generalized
Hooke's law hold (11.1) (the mid plane is chosen to be the xy plane,
the direction of the predominant fibers 1s chosen to be the direction

of the x axis).

A

‘T
—— KUeas o -l
Kpueas r [,

AbidA

Fig. 13. A) Curve.

For the mean elastic constants we may choose:

JE,+ 3,05 10° Ky /eme - - 0,467 - 163Kk /ol
v 20,02, G — 0,22 100 g7, /ome
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The corresponding complex parameters are equal to:

)y =—0,567, %\, =0,172,

#y == 3,621, p, == 0,7001,
|%]=0,567, |%,1=0,172, q,=1.;.}

(11.7)

If the y axls 1s directed along the fibers rather th>n the x axis

we obtaln:
ll.l=0,2761. e == 1,416¢, ]
), == 0,567, Ay =—0,172.

Figure 14 shows the diagram of the variation of Young'

EQ with the variation of the angle @ .%

(11.8)

s modulus

3. Plywood. Also plywood may serve as an example of an anisotropic |

material. For the sake of definiteness, we shall focus our

birch plywood which 1s produced of an odd number of wood layers (ply- %

wood) glued to each other by a bakelite film and distributed symmetri-

cally to the central layer; in this case the directions of

of neighboring layers are mutually perpendicular (Fig. 15).

plate 1s inhomogeneous, but if the plane stressed state is
may be regarded as homogeneous and, moreover, orthotropic,
approximation. One c¢f the three planes of elastic symmetry

with the mid plane, the second one 1is perpendicular to the

the outer layers (or, as they are called, to the casing fibers), and

the third one 1s orthogonal to the first two planes.

: Ay
A NN
. e KpUBOA ""F,! 5&1&\}: :'1"
96' 75° \)< NE
s \
30( - .
15 ‘
0° ]

0 g 02 03 048 05 06 07 O0F 09 I0
Fig. 14. A) Curve.

3
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attention on | ?

the ribers
The plywood !
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in the first
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fibers of
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Considering the generalized plane

stressed state of the above-mentioned plywood

plate we choose the mid plate to be the xy

plane, and the x axis parallel to the casing

I
fibers. The equations of the generalized ‘

o 145 Hooke's law for such a plate regarded as an S
entirety will be written in the form (11.1) g'

where El’ E2, vl, v2 must be understood to be the mean elastic con-
stants for the plate as a whole; the latter depend on the elastic con-
stants of the wood layers, their number and thickness.* We present the
numerical values (the normalized ones) of the constants Ey, Ey, and G
and Young's modulus E' for a stretching under an angle of U45° to the
casing fibers for three-layer plywood with a thickness of 1; 1.5; 2;
2.5; 3; 4 and 5 taken from the "Handbook of the Airplane Constructor'"#:

E,==1,2 .10°kg/cm2E,: 0,6 -lmkg/cm%

, , 11.
G 0,07 - 10°%kg/cme [ == 0,24 - 10°kg/cm< (11.9)

] In the "Handbook" the Poilsson coefficients are not given, but they can
: be calculated from the first formula (9.10) by putting @ = U5° in it

and substituting the well-known values (11.9). Hence we obtain:

E
———— Kpuoas - —Ef
]

4-\ N\
90° —-{ )
75° - N T
S . < \ Q\\ >
60 ~ ¥
- 45° z

| ¢ o 02 03 04 05 05 07 08 03 L0

I Fig. 16. A) Curve.

- 57 -

- e e e ST AT T |

0 ad ek oot e e et gl Ll L



v == 0,071, == 0,036. (11.10)

The complex parameters have the following values:

l.l-l'—_~‘=4,lll.. l»’-2=-'—'-0|343t»
\, =—-0,609, ),:-=0,489,
I).II:T—-.O.GOQ, I)-zl:'__'0|489| \.{“_‘: w.

(11.11)

If we direct the x axis across the casing fibers rather than along them

we obtain:
== 0,2430,  p, == 2,914, }

A == 0,600, A, ==--0,489. (11.12)

Figure 16 shows a diagram of the variation of E’cp with the varia-
tion of the direction constructed on the basis of (11.5) and the numer-

ical values (11.9)-(11.10).

§12. THE PLANE PROBLEM FOR A BODY WITH CYLINDRICAL ANISOTROPY

In §§ 5 and 6 the general equations of the plane problem for a ho-
mogeneous body were derived, in which parallel directions passing
through different points are equivalent in the sense of the elastic
properties. In a completely analogous way we may also obtain the gener-
al equations of the plane problem for a body with cylindrical aniso-
tropy.*

Let us consider the elastic equilibrium of a plate of constant
thickness with cylindrical anisotropy under the action of forces dis-
tributed along the boundary and of the volume forces. With respect to
the elastic constants we shall make the following assumptions:

1) the axis of anisotropy g is normal to the mid plane of the
plate (the point of intersection of the axis of anisotropy with the mid
plane which will be called pole of anisotropy in the following may lie
either inside the region of the plate or outside or at the boundary);

2) at each point there is a plane of elastic symmetry normal to

the'axiS~of anisctropy (and, conseguently; parallel to the mid plane);
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The surface and volume forces will be as-
sumed parallel to the mid surface, distributed
symmetrically with respect to this plane and

slightly varying according to the thickness.

The strains will be regarded as small.
Fig. 17. The axis of anisotropy will be chosen as
the z axis of the cylindrical coordinate system
r, 6, 2z, directing the polar axis z arbitrarily in the mid plane (Fig.
17).

Let us designate by h the thickness of the plate, by R, 0 the pro-
jections of the volume forces (per unit volume) on the coordinate di-
rections r, 6 (Z = 0) and consider the values of the stress components
and displacement projections averaged over the thickness:

hp2 Y
- 1 = .1 1

Op == - o, dz, TE oy dz,
Y o -hp
h2 hi2 (12.1)
- 1 * = 1 .
9y 7= 5 ' o dz, 0T | T, dz,
-k ~hp
hi2 hr
u.——-l_ r s _ - .
F h J {I,(~. Ilb---’l' J ”y‘ 2.
—hj2 —-h2
Moreover, we shall introduce the designations:
hf2 Iy 2
5 1 P | ) (12.2)
R. -‘/l J< R ll-, ). .V/l. 1 ﬂ(/l,
—h2 ) —hs2
o gm, -V dw o, w oo 0w | dwy W
g S gy T g b (12.3)

and consider the case where the volume forces have a potential U(r, 0),

i.e., are determined by the formulas

(]

= o 5.
R::-—.--d;—. H---'

¢

90 (12.15)

Ny -
<

Carrying out the operations of taking the mean values over the

equilibrium equations in cylindrical cocrdinates (1.4) and the equa-
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tions of the generalized Hooke's law corresponding to the given case

of anisotropy and neglecting Ez we obtaln the system

0::,. G ——_Be —
J- . __._-’ —2.J-R==0,
0 8 1 039 ,4;
e R AR AR
E;:=a,l5,+alza,,+alﬁt-,q.
5" = alZ;r.—I_ 0225-',-}' 020;,1, ( 12 . 6 )

—Tﬂ = nlﬁgr."l" 026;6.'} aGGTtIU' ,
Eliminating the displacements from the expressions (12.3) we ob-
tain the compatibility equation

0%, O (rig)  Bri) Oy )
IR = ey o A s (12.7)

We shall satisfy the equilibrium equations (12.5) by introducing

the stress function F(r, 6) such that in the case of the isotropic
body:

a;,:z—()—r—,‘—-{—-lj, . i (12.8)

On the basis of the compatibility equation (12.7) and the rela-
tionships (12.6) and (12.8) we obtain a differential equation which is

satisfied by the stress function:

a2 o1 - 2z L a1 20y * ”'0) L oo
— 2007 o‘ﬁ'ém RPN Fpimd 2
TP S RO/ ATV .. S IO
= 2(a,5-1- ay) ”,3" : 0(2050 4- (204, - 20,5 -} agg) ',“.‘ . 3:,'? + (12.9)
'F“n L ?)f +2(ag t-ax) ,la (Z){):“
(a.z+an)‘2,,‘1 ORRII LS AP i

10U 10U
-+ (a,,— 205, - “12)‘,‘ “or 4 (a1 “20)',;;‘ * o0

This equation corresponds to Eq. (5.9) for a homogeneous plate. It

1s considerably more complex than Eq. (5.9) and contains arbitrary

i s
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functions F of different orders, from the first to the fourth one, and

not only of the first order as was the case with the homogeneous equa-

tion. In view of the complexity of Eq. (12.9) it is not possible in

this case to find a general expresslon fcr F in terms of arbitrary
functions analogous to the expressions (7.16), (7.17) or (7.21).

If a plate with cylindrical anisotropy is, at the same time, also
orthotropic, i.e., has three planes of elastic symmetry at every point,
one of which is parallel to the mid plane, the other one passes through

the axis of anisotropy, then Egs. (12.6) will be written in the form:

Ey
- v, - 1 - (12.10)
&y = F‘r‘°r+",7 O3
— ] =
Tr'l=(_]'—etr1‘

Er’ Ee are here Young's moduli for the stretching (compression)

along the principal directins r and 6; vp, Vg are the Poisson coeffi-

cilents and Gpe is the sheai modulus for the principal directions r, 6.

For this case Eq. (12.9) simplifies and assumes the following form:

.'-.E"f;_|_ 129\ 1 0F 4 '_...'-.f".f.'4_-?_._'..‘?.‘.,”.~-
);fo;fam L T I TR A B

Ey ot UGy T E,
Lo 2\ er 1 e
_‘(U]"”£;)}i'o;o¢f"k;'?f'lﬁi"
_*_(o .'.'_'_‘.'_’._}.V-.'.),!..‘.’?’: .|_-!_ L oF (12.11)
, “E, U r¢ o D, ey e T
- ..[l:f‘g.t}iU RO N (2 |,|.v,)| oz’j]
E¢ "0t VR A g VNE T R, T or )

The boundary conditions for the given forces at the plate boundary
may be reduced to prescribing the first derivatives of the stress func-
tions 3F/3r and 39F/36 at the contour of the region occupied by the
plate.

The problem of plane deformation is completely analogous to the
problem of the plane stressed state of the plate. If the body shown in
Fig. 8 (§6) has the property of cylindrical anisotropy with the axis of

anisotropy z directed parallel to the generatrix then Egs. (12.5)-
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(12.9) in which only the aij have to be replaced by the reduced strain

coefficients
) ap3ajs
Big=ay— —— (12.12)
(lr j=lo 21 6).
- § hold for it.
i Besides O, Og and T,o also the stress a, acting in the cross sec-

; tions and equal to
O ==~ [1—:;(01:;%’*‘ @339, - Q567 1)- (12.13)

is obtained in this case.
P.N. Zhitkov considered the generalized plane stressed state of an

orthotropic body having cylindrical anisotropy in which the moduli of

elasticity are functions of the coordinates r and 6. In this case a
more complex equation of fourth order with variable coefficients* is

obtained instead of Eq. (12.11).

Manu-
script
Page
No.

[Footnotes]

u 29#% See our works: 1) K voprosu o vlyanii sosredotochnykh sil na
paspredeleniye napryazhenly v anizotropnoy urpugoy srede [On
the Problem of the Influence of Concentrated Forces on the
Distribution of Stresses in an Anisotropic Elastic Medium],
Prikladnaya matematika 1 mekhanika [Applied Mathematics and
Mechanics], Vol. 3, No. 1, 1936; 2) Nekotoryye sluchai plos-
koy zadachi teorii uprugosti anisotropnogo tela [Several Cas-
es of the Plane Problem of the Theory of Elasticity of an
Anisotropic Body], Sb. Eksperimental'nyye metody opredeleniya
napryzheniy 1 deformatsiy v uprugoy i plasticheskoy zonakh
[(Experimental Methods of Determining the Stresses and Strains
in the Elastic and Plastic Zones], ONTI [United Scientific
and Technical Publishing Houses], 1935.

20%% Muskhelishvili, N.I., Nekotoryye osnovnyye zadachl matemat-
icheskoy teorii uprugosti [Several Basic Problems of the
Mathematical Theory of Elasticity, Izd. AN SSSR [Publishing
House of the Academy of Sciences of the USSR], Moscow, 1954,
page 107.
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30

32
35

37

39

b1+

L #%

42

3%

§3*%

3% %%
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"aprugosti dlya anizotropnoy sredy [A New Solution of the

N.I. Muskhelishvilil chooses that direction to be the positive
direction of passing along the contour for which the region
remains on the left side, i.e., counterclockwise for the out-
er contour and clockwise for the contours of the openings
(see his book mentioned, pages 113, 143).

See our works mentioned in §5.

See our work: "Ploskaya statisticheskaya zadacha teorii upru-
gosti anisotropnogo tela" [The Plane Statistical Problem of
the Theory of Elasticity of an Anisotropic Body], Prikladnaya
matematika i mekhanika [Applied Mathematics and Mechaniecs],
Vol. 1, Edition 1, 1937.

See N.I. Muskhelishvili, '"Nekotoryye osnovnyye zadachi mate-
maticheskoy teorii uprugosti" [Some Basic Problems of the
Mathematical Theory of Elasticity], Izd. AN SSSR [Publishing
House of the Academy of Sciences of the USSR], Moscow, 195U,
page 111.

See our work: "Ploskaya statisticheskaya zadacha teorii up-
rugosti anisotropnogo tela" [The Plane Statistical Problem of
the Theory of Elasticity of an Anisotropic Body], Prikladnaya
matematika i1 mekhanika [Applied Mathematics and Mechaniecs],
Vol. 1, Edition 1, 1937, page 81.

See our mentioned work, pages 83-87.

The determinant of this system is equal to
453 .
de= - ¥ (2. -)2 A I (C ) L A I A
TETH G (G- G- {1 B 8)2).
In the case of unequal complex parameters, obviously, always
d > 0.

See the book by N.I. Muskhelishvili mertioned several times,
pages 113, 114, 143,

Mikhlin, S.G., Ploskaya deformatsiya v anizotropnoy srede
[The Plane Deformation in an Anisotropic Medium], Trudy Seys-
mologicheskogo instituta AN SSSR [Transactions of the Seismo-
logical Institute of the Academy of Sciences of the USSR],
No. 76, 1936.

Savin, G.N., Osnovnaya ploskaya staticheskaya zadacha teorii
urpugostil dlya anizotropnoy sredy [The Basic Plane Static

Problem of the Theory of Elasticity for an Anisotropic Medi-
um], Trudy instituta stroitel'noy mekhaniki Ukrainskoy Akad-
emiil nauk [Transactions of the Institute of Construction Me-
chanics of the Ukrainian Academy of Sciences], No. 32, 1938.

Sherman, D.I., Ploskaya zadacha terrii uprugosti dlya anizo-~
tropy sredy [The Plane Problem of the Theory of Elas“icity
of an Anisotropic Medium], Trudy Seysmologicheskogo institu-
ta AN SSSR, No. 86, 1938.

Sherman, D.I.: 1) Novoye resheniye ploskoy zadachi teorii F
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Plane Problem of the Theory of Elasticity for an Anisotropic
Medium], Doklady AN SSSR [Proceedings of the Academy of Sci-
ences of the USSR], Vol. 32, No. 5, 1941; 2) K resheniyu

ploskoy zadachl teoril uprugosti dlya anizotropnoy sredy [On
the Solution of the Plane Problem of the Theory of Elasticity

of" an Anisotropic Medium], Prikladnaya matematika 1 mekhani-
ka, Vol. 5, Edition 6, 1942,

Ayzenberg, T.B., Ploskaya zadacha teorli uprugosti dlya ani-
zotropnoy sredy pril zadannykh granichnykh smeshcheniyakh [The
Plane Problem of the Theory of Elasticity for an Anisotropic
Medium for Given Boundary Displacements] Sbornik statey Vses-
oyuznogo zaochnogo Politekhnicheskogo instituta [Collection
of Articles of the All-Union Correspondence-Course Polytech-
nical Institute], Edition 6, Moscow, 1954,

Il1'ya Vekua, Prilozhenlye metoda akademika N.I. Muskhelish-

vili k resheniyu granichnykh zadach ploskoy teoril uprugosti
anizotropnoy sredy [Application of the Method of Academician
N.I. Muskhelishvilil to the Solution of the Boundary Problems
of the Plane Theory of Elasticity of an Anisotropic Medium],
Soobshcheniya Gruzinskogo filiala AN SSSR [Communications of
the Georgian Branch of the Academy of Sciences of the USSR],
Vol. 1, No. 10, 19%40.

Kupradze, V.D. and Basheleyshvili, M.O., Novyye integral'nyye
uravneniya anizotropnoy teoriil uprugosti i 1kh primeneniye
dlya resheniya granichnykh zadach [New Integral Equations of
the Anlisotropic Theory of Elasticity and Their Application to
the Solution of Boundary Problems], Soobshchenliya AN Gruzin-
skoy SSSR [Communication of the Academy of Scilences of the
GeoEgian Socialist Soviet Republic], Vol. 15, No. 6 and 7,
1954,

Coker, E. and Filon, L., Opticheskly metod isslecdovanlya nap-
ryazhenily [Optical Method of Investigating Stresses], ONTI
[United Scientific and Technical Publishing House], 1936.

Krasnov, V.M., Ob opredelenii napryazheniy v kubicheskikh
kristallakh opticheskim metodom [On the Determination of
Stresses in Cubic Crystals by the Optical Method], Uch. =zap.
Leningradskogo gos. universiteta, seriya matem. nauk [Scien-
tific Reports of the Leningrad State University, Series of
Mathematical Sciences], No. 13, 1944, No. 87; 2) Krasnov,
V.M. and Stepanov, A.V., Issledovaniye zarodyhsey razrush-
enlya opticheskim metodom [The Investigation of Nuclel of
Destruction by the Optical Method], Zhurnal experimental'noy
1 teoreticheskoy fiziki [Journal of Experimental and Theoret-
ical Physiecs], Vol. 23, No. 2 (8), 1952; 3) Krasnov, V.M. and
Stepanov, A.V., Izuchenlya opticheskim metodom napryazhennogo
sostoyaniya anizotropnoy plastinki, nakhodyashcheysya pod
deystviyem sosredotochnoy sily [The Investigation of the
Stressed State of an Anisotroplic Plate under the Action of a
Concentrated Force by an Optical Method], loc. cit., Vol. 25,
No. 1 (7), 1953.

This problem was worked out in the textbook by A. Lyav
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(Lyav, A., Matematicheskaya teoriya uprugosti [Mathematical
Theory of Elasticity], ONTI, Moscow-Leningrad, 1935, pages
163, 164), and in a particularly detailed manner in the works
by P. Bekhterev (see the remark in §2); see also our book
"Teoriya uprugosti anizotropnogo tela" [Theory of Elasticity
of an Anisotropic Body], Gostekhizdat {[State Publishing House
of Theoretical and Technical Literature], Moscow-Leningrad,
pages 33-U45,

The constants ni and né are called "coefficients of mutual

influerice of the first kind" by A.L. Rabinovich; they charac-
terize the elongations due to the tangential stresses (see
Rabinovich, A.L., Ob uprugikh postoyannykh i prochnosti ani-
zotropnykh materialov [On the Elastic Constants and the
Strength of Anisotropic Materials], Trudy TsaGI [Transac-
tiﬁg§ of the Central Aero-Hydrodynamical Institute], No. 582,
19 .

These formulas were derived in our work "O kompleksnykh para-
metrakh vkhodyashchikh b obshchiye formuly nekotorykh zadach
teorii uprugosti anizotropnogo tela [On the Complex Parame-
ters Entering the General Formulas of Several Problems of the
Theory of Elasticity of an Anisotropic Body], Uch. zap.
Leningr. gos. un-ta, seriya fiz.-matem. nauk [Series of Phys-
ical and Mathematical Sciences], No. 13, 194l

Voigt, W., Lehrbuch der Kristallphysik [Textbook of Crystal
Physics], Leipzig-Berlin (Teubner), 1928.

Auerbach, F., Elastizitaet der Kristalle [Crystal Elasticity],
Handbuch der Physikalischen und technischen Mechanik [Hand-
book and Physical and Technical Mechanics], Vol. 3, Leipzig,
1927.

Geckeler, J.W., Elastizitactstheorlie anlisotroper Koerper
[Theory of Elasticity of Anisotropic Bodies], (Kristallelas-
tizitaet) [Crystal Elasticicty], Vol. 6, Berlin, 1928.

Mitinskiy, A.N., Uprugiye postoyannyye drvesiny kak ortotrop-
nogo materiala [Elastic Constants of Woods as an Orthotropic
Material], Trudy Lesotekhnicheskoy akademii im. S.M. Kirova
[Transactions of the S.M. Kirov Wood Engineering Academy],
No. 63, 1948. In this work the literature on the problem of
the mechanical properties of wood is cited.

Rabinovich, A.L., Ob uprugikh postoyannykh i prochnosti ani-
zotropnykh materialov {On the Elastic Constants and the
Strength of Anisotropic Materials], Trudy TsAGI, No. 582,
page U40.

The numerical values ot the moduli of delta wood and the dia-
gram of Fig. 14 are taken from the above-mentioned work by
A.L. Rabinovich (page 48).

See the work of A.L. Rabinovich, "O raschete orto.ropnykh
sloistykh paneley na rastyazheniye, sdvig i 1zgib" [On the
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Calculation of Orthotropic Slab Panels With Respect to
Stretching, Shear, and Bending], Ministerstvo aviatsionnoy
promyshlennosti SSSR [Ministry of the Aviation Industry of
the USSR], Trudy [Transactions], No. 675, 1948.

"Spravochnik aviakonstruktora" [Handbook of the Airplane
Constructor"], Vol. 3, Prochnost' samoleta [Airplane
Strength], Izd. TsAGI, 1939 (Table 63 on page 325).

The equations cited in this section were for the first time
obtained in our work "Ploskaya zadacha teorii uprugosti dlya
tela 1 tsilindricheskoy anizotropiyey" [The Piane Problem of
the Theory of Elasticity for a Body with Cylindrical Aniso-
tropyl, Uch. zap. Saratovskogo gos. un-ta [Scientific Reports
of the Sratov State University], Vol. 1 (14), No. 2, 1938.

Zhitkov, P.N., Ploskaya zadacha teoril uprugosti heodnorodno-
go ortotropnogo tela v polyarnykh koordinatakh [The Plane
Problem of the Theory of Elasticity of an Inhomogeneous Or-
thotropic Body 1n Polar Coordinates], Trdy Voronezhskogo
gos. un-ta [Transactions of the Voronesh State University],

Vol. 27, fiz.-matem. sbornik [Physical and Mathematical Col-
lection], 1954,
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Chapter 3

THE BENDING OF PLANE ANISOTROPIC BEAMS AND CURVED GIRDERS
| §13. SIMPLEST CASES

In thils chapter we consider several cases cf stress distribution
under the action of bending loads in a rectangular plane plate, a
wedge-shaped console of rectangular cross section, and in a curved gir-
der having the form of a part of a plane circular ring. In all cases we
assume that at each point of the body there is a plane of elastic sym-
metry, parallel to its mid surface (which 1s taken to be the zy or ré6

plane).

Let us start from the simplest cases of the equilibrium of a homo-

geneous anisotropic rectangular plate of constant thickness h which is
in a generalized plane stressed state under the action of forces dis-

tributed along its boundary. In all cases where a homogeneous beam 1is

considered we assume that the equations of the generalized Hooke's law
connecting the values of the stress and strain components whose mean

has been taken over the thickness have the form:

e, ==0,,0,1 0199, AT, ]
ey == 101wy} Gutay i (13.1)
Tay == 016%2 1 A%y} Aoy

If the plate is orthotropic and the principal directions are cho-
sen to be the directions of the x and y axes, then the coefficients ;
aAygs Gog areE equal to zero, and the rest 1is more conveniently expressed

in terms of Young moduli, Poisson coefficients, and the shear modulus

(the principal ones):
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The solutions for the simplest cases are elementary and we present

them without derivation.

1. Stretching. A rectangular plate is stretched by normal fcrces p

which are unlformly distributed along its two sides (Fig. 18).

9z == P Jy“'_'—‘f_ry’—"O; F:‘:-;-pyg (13.3)

AY

ihy |°1¢|pr 1 e e o — o __4__{11
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< 3 >, plre— 014 l = l>1‘u‘,sll botme

Fig. 18 Fig. 19

The same stress distribution 1s obtained as in a stretched iso-

tropic plane, and the deformations are determined from Eqs. (13.1):
E2==app, By E=APy gy == 0P (13.4)

A nonorthotropic plate 1is elongated under the action of stretching
forces in the direction of the forces, and is contracted in the perpen-
dicular direction (if only ag, < 0) and, besides, is distorted in the
zy nlane: the rectangular plate becomes oblique (see the dotted lines
in Fig. 18). The distortion is determined by the constant a;g; an or-

thotroplc plate remains rectangular.

M-—Hht-(—
o Lo 1 N
= —1 i~
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2. Shear. Along the boundaries of a rectangular plate tangential

forces of an intensity ¢t are uniformly distributed (Fig. 19). We have:

v:

=0, tyu=b F = — txy, (13.5)
16['

'.'_:(7..1, == Qgul.
2y 20 Ty 66 (13.6)

A nonorthotropic plate experiences elongations and lateral con-

G =20
[
e, ==0

tractions according to the signs of aig and ases besides the shear in
the xy plane which 1is determined by the constant g An orthotropic
plate experiences pure shear without elongations.

3. Pure .hear. Forces giving rise to moments M (in kg x cm) are

distributed along the two sides of a beam-plate (Fig. 20).

We have:
M
o-l 5= -7‘)" c1U = :-L'y; ov
| o (13.7)
6J 7 ( 12

The same stress distribution is obtalned as in an isotroplic beam
(1f no account is taken of the local stresses in the neighborhood of
the ends which, according to the Saint Venant principle, practically
have no Influence on the stresses in zones far from the loaded surfac
es).

The displacements of the beam particles [found by integrating Egs.

(13.1)] are equal to:

M
== (a“.\'y-{-- -;-omy?)-— wy - u,,
(13.8)

M 2 2
V== gy (@) = x?) - ox - v,

Here w, Uy, v, are constants expressing the "rigid" displacement of the
beam in its mid-surface, 1.e., which is not accompanied by deformation.

The first of expressions (13.8) shows that the cross sections of a non-

orthotropic beam do not remain plane; the distortion depends on the

constant a6 The cross sections of an orthotropic beam are not dis-

- 69 -

|

torted in deformation. . . 3
|

{

3

iy Lo el | T T T T R YT ST W IS LY 20 L W WA RO A N V.7 T Y0 TI P L P TONT TF TUIE Lo B I T R 7% T BRIy PPN T WRRTS P\ TN T LN PUTWIROAT Y R




b el e o, e e b b e e i S A

The equation of the curved beam axis for fixed ends = = 0 and =z

= 1l has the form:

1 ;4'12“}‘- (Ix--- x2), (13.9)

where n 1s the ordinate of the curved axis.

The curvature of the curved axis is equal to

— " {‘!Iln_ . <_A!-

SR e (13.10)

~ |-

The functional relationship between the curvature of the axis and
the moment of flexure is the same as in the case of an isotropic beam,
but instead of the modulus EF (which is the same for all directions 1in

an isotropic beam) the modulus Ei for stretching (compression) along

the axis occurs.

§14. BENDING OF A CONSOLE BY A TRANSVERSE FORCE

A beam with a cross section having the form of a narrow rectangle
is fixed at one end and 1s bent by a transverse force P applied to the
other end (Fig. 21). The solution is obtained with the help of a stress

function in the form of a polynomial of the fourth degree#*

= P X 3 ll!.‘ L]
Fo:ty [ ol S o Do P 2y')]- (14.1)

lﬂ‘

The stress components are determined by the formulas:

Oy =: - ~?~xy i 5’.2:‘; (g .-_y'z).
v P f (14.2)
%v‘=—“§7(q-—-y) :

(J - "l”;) .

These stresses satisfy exactly the conditions on the long sides y = + %

and in the cross sections they reduce to a force and a moment balancing

the external force P.

., - _In an.orthotropic beam in which the axial direction x 1s the prin-
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cipal one ag = 0, and the same stress distribution is obtained as in

an isotropic beam¥:

P P (b a
oL XY 3y 0, - -2-1-(-4---—_))-). (14.3)

For a beam with which the coefficient aig is not equal to zero
(the case of a nonorthotropic beam or an orthotropic beam with which
the axial direction x is not the principal one) the stress 0, is dis-
tributed according to a parabolic law rather than a linear one, along

the cross section. The diagram of the distribution of o, over the cross

section 1s shown (at an arbitrary scale and for ag > 0) in Fig. 22;

the dotted 1line shows the stress distribution in an isctropic beam. The
greatest normal stress is obtained at the points y = /2 or y = — b/2

of the fixed cross section; for aig > 0 it 1s equal to

cmurzagf(yluﬂﬁhﬁ) (14.4)

TN RN NN
qY

Fig. 22

(compressive stress) and for ayg < 0

. 6pP! / o _a!‘_ ’_é_
Cmax. =T o \l I“l(l; 3! ) ( 1u ' 5)
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We note that the formula for the curvature of the curved beam axis
(both an orthotropic or nonorthotropic one) has the same form as in the

case of pure bending, 1.e.,

_L:_:’Afnu:_:_/”‘ (1’4 6)
p J E:J' '
but in this case the moment of flexure varies along the beam length:
M=:—Px. (14.7) 5

The parabolic distribution law of normal stresses in cross sec-

tions 1is not reflected in the equation of the curved axis which has the

e

same form as in the case of an isotropic beam:
ST NS T (14.8)
(O .
E. Reissner particularly considered the limiting case of an ortho-

tropic beam where Young's modulus E, for the y direction perpendicular

2

to the x axis 1is negligibly small compared to the modulus El for the

axial direction. The solutions obtalned were used by him to study the 1

stresses and strains in a detall having the shape of a case.¥

§15. BEAM BENDING BY A UNIFORMLY DISTRIBUTED LOAD

X i

The stress distribution in a beam which is uniformly loaded along

T A At TR T A S s e e st

b e

its whole length is obtained with the help of a stress function having

L5k cocni e DA
sy o S I

the form of a fifth degree polynomial. The arbitrary constants entering ]

this polynomial may always be chosen such that the stress on the long

sides exactly satisfy the boundary conditions, and on the short sides 1

reduce to forces and moments balancing the external load. We shall pre-

sent the solutions for two cases »>r end fixing.¥*#¥ 3
1. Console. A beam with a cross section having the form of a nar-

row rectangle is fixed at one end and bent by a normal load g (per unit

length), which 1s uniformly distributed along one of the long sides
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(Fig. 23).

The following formulas are obtained for the stress components:

. 9x%y g fag x (v 5 ¥\
oo D[S (12 )
l 9 ?a‘n'l a. a?h‘ l)"‘ 3)’
< 41113 afl <b" 53)]'
c.a R A
v i) (15.1)
e A (e a(y Ay
Ty T 21(4 y) n a“(b. b3)
hb?
(v -i):

The moment of flexure M and the crosscut force N in an arbitrary cross

section x are equel to:

M. - 5]39.' N .- . (15-2)

The first terms of the expressions 0, and T, aT€ the stresses deter-

mined by the elementary theory of bending, and the second terms which

depend on the elastic constants are the additional stresses on and

ATxy which are not taken into account by the elementary theory. The

formulas for the normal and tangential stresses in the cross section
[the first and the second of (15.1)] may briefly be written in the fol-
lowing way:

M
z = 7‘)"*“ AJ.L"

[}

(15.3)
N (B
() s

For an orthotropic beam with which the direction of the x axis coin-

cides with one of the principal directions we obtain from (15.1):

. q_[?)r q 4)73 3)«

0w == G (30 g):

(o g3) g2 .
°V"‘2n( B3 4b’)' j (15.4)

x (b2 Q
‘:J'll ITT e e —4 ——y')
Here
. ?ﬂlz'l'aw L (E
”lv-.-- *'2""1-"*------'-(-—0—-‘—2"“). (15'5)- .
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Hence 1t 1s evident that the distribution of the stresses o and Txy in
an orthotropic beam does not differ from the distribution in an ortho-

troplc beam. In the case of an isotropic material m = 1.*
Determining the displacements u and v by integrating Egs. (13.1)

we obtaln the equation of the curved axis and the depth of curvature

(the maximum flexure of the axis):

2
, b, 8 ay\ . (15.6)
ReE N C L B DR (3nl2-|~4n(.0—- 3--.6:'{)0 -2,

. 2
fe qanl' * qtn 8 “m).

Tt " (3(l|._. | dag,- - 3 A (15.7)

The first term in the expression for f is the depth of curvature,
determined by the elementary'theory, and the second one 1s the correc-
tion obtalned on the basis of a more rigorous theory of the plane
stressed state.

The curvature of the curved axls is determined by the formula:

(12

.w)_ (15.8)

l._'_ l”lln (]b'! 8
I "'—”J "I- (3”12'| 4”00_-'3.1 ay,

P 40
In thls case the law of proportionality between the curvature of
the curved axls and the moment of flexure i1s no longer valild; the ex-

pression determined by the elementary theory must be supplemented by a

constant correction term which depends on the elastic constants and the

dimenslions of the cross section.

> h -
FEITT, L |
L [ 1
T 4
. z
Yo : >V *y
Fig. 23

2. A beam on two supports. For a beam hinged at the ends and bent

by a uniform load (Fig. 24) the formulas for ¢ and T obtalned are
.the same as for the console shown 1n Flg. 23, and the stress o, 1s de-

-7 -
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termined by the formula

9y g o ae X 192 1
Cut iy U /1[ oy B (1 12 ) l
42 ?"u i g __"_170 Uﬂ i _E«.V_ (15.9)
10“ a?, b s6 )|

The expressions for O and Txy may be written in a short manner in

the form (15.3), but in this case

Me=d@oar), New lgx (15.10)

and the correction on has a somewhat different value (the constant a]6

will enter with a minus sign).

We give here the equation of the curved axis and the formulas for

the depth of curvature and the curvature:

— qa" (.x -Glz A 514)_{_ (15.11)
2
qb! 32 16 2 '! .
}-—-—(Bal.4 tags -5 -an)(l ')
AP 32 (15.12)
f.._ qzail} _{ qsu_l (3(“2 I 1(700—1 3 * "‘1’:—)’
1 Ma 32 ag
Fiad _."—-} -40-1 (Bau P dag - 3-'7,71')- (15.13)

Using the stress function in the form of an integral polynomial
also the stress distribution in a homogeneous beam under the action of
the proper welight may be obtained. Having solved this problem we come
to the following concluslon. The distribution of the stresses O and
Txy due to the proper weight obtained in a beam fixed at one end or
supported at the ends 1s exactly the same as in a beam which is loaded
by uniformly distributed normal forces with an intensity of g = ybh
(per unit length), where y 1s the specific weight of the material. As
to the normal stresses oy in the longitudinal sections expressing the

action of the longitudinal beam layers one each other they are in both

cases determined by the law




§16. BEAM BENDING UNDER A LOAD WHICH IS DISTRIBUTED ACCORDING TO A
LINEAR LAW

With the help of a stress function having the form of a sixth-de-
gree polynomial 1t 1s easy to obtain the solution for a beam loaded by
normal forces distributed along the length according to a linear law.
As in the cases considered earlier the solution will exactly satisfy
the conditions on the long sides and approximately those at the short
ones where the stresses, generally speaking, will be reduced to moments
and forces.¥

1. Console. The beam-piate 1s fixed at one end and bent by a nor-
mal load distributed according to a linear law. Placing the coordinate

axes as in Filg. 25 we give the equation of a load referred to the unit

length in the form:

g==go. (16.1)

fiere q, 1s the maximum value of the load (at the place of fixation).

PP

The moment of flexure and the crosscut ]
9 0 force are equal to:
Q
-3 .
I, 2 Mo B2 Noo B2 (16.2) %
b >
{ 2
T< 1 ¥ The final formulas for the stress compo-
[y. ]
Fig. 25 nents read:
M o X o0 ¥ a Y
°f’"'J'y""sh"'l'(zo'vf g b)' f
e yoog ) (16.3) ‘
%y QAI("" I 'le'
- ....N 0 )2 . (’b .y yE = y‘_
o=y (e 7)o (1 - 2051802,
1 (E . __
(b rom)s o=18)
In the formulas (16.3) the first terms of the expressions for O
and Txy are the stresses obtained from the elementary theory, and the
second terms are the corrections Aom and ATmy given by the rigorous
theory.
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The equation of the curved axls 1s obtained by determining the
displacements u and v; it has the form

. b
5”x'i4p)"'2$%uf><

m == g (5° ‘
x(ﬂg?- A CIRECRED!

(16.4)
The depth of curvature and the curvature are determined from the

formulas:

gl q(,b (1f| 3, ) 16.
S0ED T 0ES 3u); ( 5)

b (AE, .
PR .<| qa 7 -3'1l £z
p EJ IUI;/( ) (16.6)

The correction term in the formula for the curvature 1s a linear

function of =x.

2. A beam on two supports. A beam-plate supported at the ends is

bent by a load whose equation has the form

g= gt (16.7)

where q, 1s the maximum value of the load (Fig. 26).
We present the formulas for the moment of

flexure, the crosscut force, and the stresses:

A
=
=

i[ a 5 " 7”“"‘ﬂ”“*‘) (16.8)
38 o
o 0 Gl - B2,
(NN e o 2
Yy R Jy | odomqt- \)(2055 ..32.),
3
Fig. 26 4nﬂ[‘ Q(._l.yg.x._4x) 6D

The equation of the curved axis and the expression for its curva-

ture will be in this case: i
LR Jl(%\ﬂ | 130xt 1028 - 9002 |- 700w} 75 - (16.10)
qoh® 17y S P IR Y IO VALY ]
"'4mﬁgﬂ(li . J(K bl P30, (16.11)
1 T ”1 " . : Q
?=‘}g‘ whn( 3!)“‘ x)
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The determination of the solution for a nonorthotropic beam does
not, in principle, present any difficulties, but all calculations and
final formulas and equations will be more cumbersome (owing to the fact

that the constants a6 and asg are different from zero).

§17. BEAM BENDING BY AN ARBITRARY LOAD
Using a stress function in the form of an integral polynomial the
stresses 1in a homogeneous beam acted upon by a normal load which is

distributed along the whole length according to the law

9779 |}ﬂ]m(7)k (17.1)
k-1

may be found. If the load, as a function of z, is given in the form of
a polynomial of degree n then the corresponding stress function must be
taken in the form of an integral polynomial of degree n + 5 with re-

spect to x and y. It may be represented in the form of a sum of homoge-

necous polynomials

= 3\
r:z:)_JPk(x, ). (17.2)
ket
where
Py(x, ) = Agpx®f- Ay xkty - Aggxk=2y? b Ayt (17.3)
and the Aki are constant coefficients. To the polynomials of zeroth and

first degree, obviously, correspond stresses equal to zero, and they
may be discarded. The polynomials of second and third degree satisfy
the equation for the stress function (7.1) for arbitrary values of the
coefficients. Each of the polynomials of higher degrees — fourth,
fifth, etec. — contains four arbitrary coefficients, and the rest of the
coefficients are expressed in terms of these four coefficients. This
fact may easily bhe verified by requiring that the function Pk be a so-

lution to Eq. (7.1) (i.e., substituting Py into the left-hand side of
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this equation and putting the result of the substituticn equal to ze
ro).

It is alvys possible to dispose of the arbitrary constants enter-
ing the expression (17.2) such that the stresses exactly satisfy the
conditions on the long sides of the beam. On the short sides (i.e., at
the ends) it 1s, in general, not possible to satisfy the conditions ex-
actly by the function (17.2); it is only possible to require that the
stresses at the ends, depending on the method of their fixation, be re-
duced to forces and moments balancing the external 1load.

If, e.g., we want to obtain the stress distribution in a beam-
plate due to a load given in the form of a quadratic function of = (ac-
cording to a parabolic law) the stress function must be chosen in the
form of a seventh-degree polynomial, or, which is the same, in the form
of a sum of homogeneous polynomials from the second to the seventh de-
gree, inclusively. The solution is obtained in a rather cumbersome form
which cannot be reduced. We only note that in all cases where the load
is given by Eq. (17.1) the final formulas for the normal and tangential

stresses in the cross section have the form:

o£=J¥)“iA%- ]
hu,zg(gn_yﬁ-FAgw ]

where M and N are the moment of flexure and the crosscut force in the

(17.4)

given section. The first terms are the stresses obtained according to
the elementary theory of bending, and the second ones are the correc-
tion terms not taken into account by the elementary theory. An analo-

gous form has also the expression for the curvature of the curved axis

L:’J; sE): (17.5)

the second term 1s not taken into account by the elementary theory.

The more geﬁeral‘case of the elastic equilibrium of an anisotropic
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rectangular plate (band) acted upon by normal and tangential forces on

both long sides was studied by A.A. Kurdyumov.¥ This author seeks the

stress function 1n the form of a sum

e gt e AERATEOR SO N Je A

F s kzn‘,ofk () ¥ (17.6)

and gives a method of determining the coefficients fk (which are poly~
nomials with respect to powers of y) by taking account of the boundary
conditions and the equilibrium conditions. A somewhat different method
of solving the same problem for an orthotropic band ("method of succes-

sive approximations") was proposed later on by L.N. Vorob'yev.##¥

T T T LT

If a load 1s distributed along a beam according to a more complex

law particularly in those cases where only a part of the beam length is
loaded the stress distribution may be obtained with the help of Fourier
series. We shall consider the way in which this method is applied with
i the help of the example of an orthotropic beam supported at the ends
and bent by a normal load distributed symmetrically with respect to the
! middle according to an arbitrary law. The other cases of a single-bay

i beam — a console and a beam on two supports loaded by an asymmetric

load may be studied by the same method with unimportant modifications
in the details.*¥#
Let the planes of elastic symmetry be parallel to the beam faces,
and, consequently, the axial direction be the principal one.
With the coordinate axes placed as shown in Fig. 27, we shall ex- f
pand the load ¢, as a function of x, 1n a Fourier series 1n the Inter-
val (-1, 1) where this load is given. The series will contain only co-

sines and a constant term

q‘—‘—‘:(]o-*—x(],”COSq‘j‘;—x—, (17-7)

el

where 1
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do: - -ll“[‘]‘l-\'- Q™ ? J q (os’”lnrdx.

[} 0

The boundary conditions on the long sides y = + b/2 have the form:

\

I'ory:.: % o, :Tiy"‘-ol .

o (17.8)
ey b N cos" 1,0
ror yoo oyt Qo Ym0 e Ty =0

m -4

The equation for the stress function has the form:

LT ) ) TR (17.9)
Eq O U Eylovidys b dy .

The stress distribution due to the constant load 9, is known to us

[see Formula (15.9) and the second and third formulas (15.1)]. The
function giving the stress distribution due to the load

G, £0S m;f,
will be sought in the form

Fm""/m()')cos,ll‘;lx'- (17.10)

Substituting the function Fm into Eq. (17.9) we obtaln the ordinary

differential equation for the function fm:
oav (1 2\ (e e (N
Eljm (0 I:'l)(l)f,,, { Eg(/ )fm"'o‘ (17'11)

The form of the function fm depends on the roots of the characteristic

equation

s.___(.fx. -Q.,,)se ;_gs -2 0. (17.12)
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If all modull El’ HP, G are finlte and not cqual to zero three

cases are possible.

Case 1. The roots are real, unequal; we shall designate them hy:

Vs sy (8,000, s, 0)
Case 2. The roots are real, equal; we shall deii;rnute them by:
His (s 0)
Case 3. The roots are complex; we shall designate them by:
s, - sVl (s-0, £ 0)

Purely imaginary roots cannot be obtained since the numbers 8, and 8.

are connected with the complex parameters of the plane stressed state
by simple relations 8, = —iul, 84 = —iuz [see Eq. (7.5)].

In case 1 the stress function Fm has the form:

~ Sy Sy ofMNe

Fo=: (Am ch’ ‘-~~I y--|— B, sh™! 4 »;y-~|-C,,, ch f-’,’il_y_.{. (17.13)
4+ Dy s Y o "7

(Am, Bm’ Cm, Dm are arbitrary constants, ch and sh are the hyperbolic

functions).

In case 2

Fy == [(Am - B, »)ch “”11")‘ F(Co b Dy sh S”![:)"] €03 "3-'1"_ - (17. 14 )

In case 3 Fm can be represented as follows:

) smry smzy\ | Am
(Fip e [(/\m ch® 4" - B, she I ) Cos 1-y- e

_{' (Cm ¢h §IIII")_’ ‘{‘ [)::1 sh 5/”1-\:) sin {-,”1:-'\‘-] COs ey .

(17.15)

In order to construct a solution for the beam shown in Fig. 27 we
assume a stress function in the form of a sum of expressions (17.13)
[or, respectively, (17.14) and (17.1?)]. Moreover, from formulas (5.7)
(for U = 0) we determine the corresponding stresses, add to ther the

stresses due to the constant load dps and require tnat the conditions

(17.8) be satisfied. From the boundary conditions we obtain a syster cf
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equations for the determination of the constants Am, Bm, Cm’ Um (for
each m a separate system 1is obtained); we find all constants by solving
these equations. As a result, we obtaln formulas for the stresses 1n
the form of series of rather complex structure. The stresses g, at the
beam ends may be reduced to moments with the help of which we shall get
rid of the superposition of the solution for the case of pure bendlng.

Problems of this kind for an anisotroplic beam, apparently, have
not yet led to numerical results.

P.P. Kufarev and V.A. Sveklo have glven the general sclution of
the problem of the elastic equilibrium of an infinitely long anisotrop-
ic band loaded along the boundaries by normal and tangential forces.*
Directing the x axls parallel to the boundaries the authors assume that
the external forces, as functions of x, are absolutely integrable 1in
the interval (-, +=) and may be represented in the form of Fourier in-

tegrals. The functilons ¢i(zl\ and ¢é(z2) in terms of which the stresses

are expressed are determined in the form of double integrals with infi-

nite limits.

§18. THE BENDING OF A COMPOSITE (MULTILAYER) BEAM

With the help of stress functions in the form of integral polyno-
mials the stress distributilon for several cases of beam bending may be
obtained where the beam consists of an arbitrary number of anisotropic
bands of identical thickness. We shall here consider only the case of
an orthotropic console bent by a force and a moment.*¥

Let be given a beam soldered or glued together of an arbitrary
number of orthotropic bands of identical thickness, but with different
elastic properties; one of its ends is rigidly fixed, and the other one
is acted upon by a load resulting in a moment ¥ and a transverse force

P. The stresses in each layer as well ‘as the equation of the bent axis
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and the bending strength must be determined.
Identifying the origin of coordinates with the topmost point of
the free end we place the x axis along the upper edge, as shown in Fig.

28. We shall number the layers consecutively, starting from the topmost

layer, and introduce the following designations: n is the number of

layers; 1 is the beam length; b is the height; h is the thickness
(identical for all bands); o'X), o(k) (k)
z Yy Ty

ponents and displacements in the kth layer; Egk), Egk), vgk), vgk),
G(k)

are the elastic constants (the principal ones) for this layer;

y Ups Uy are the stress com-

bk—l and bk are the distances from the upper edge to the upper and low-
er boundaries of the kth layer (k =1, 2, ..., n; bo = 0, bn = b).

The stress components (the mean values taken over the thickness
will be expressed in terms of the stress function Fk (for each band

separately)

g 0 Fy
okl — £k

. Py .. PFe (18.1)
x dy*

Sthy 2 9 8Lk
“E/)"“ oxt'  Cay dxdy

The function Fk satisfies the equation

222 0, (18.2)

1 05y 1 24\ 9'ry, 1 0'Fy
9.2 Oy /:"l"" dy!

A
The displacements projections (also mean values over the thick-

ness) will be determined from the equations
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koo alh | s (18.3)
dy ,.(k) v ,(l) y '

dug \ Ovx, ]

R E T R (A,
oy ox Tk ey

The boundary conditions on the upper and lower edges have the

form:

tor y==0  ofile.st.:0;)

. B .. () . o <m . .
(o)) yb cy" &8 Sy 0.

(18.4)

Since slipping of the bands is excluded we have the following con-

ditions on the contact surface..

for yesby oy Mee gl gy ey } (18.5)

Ug y==llp Vg =2
The stresses in each cross section must balance the external force
and moment (this is also valid for the end sections x = 0, = = 1);

hence follow, in addition, the conditions

n ’ 1
2‘ f )dy == 0, ) f (:))Id)i' 2 41._;‘_P.{ ,
‘bk -1 |bk -1 . (18.6)
n by
*\ p
2‘ J":_(,}‘}dy_—_.«.h__
knlbk_ J

The solution is obtained with the help of stress functions of the
form
Fr=Anxy |- Biy? | Coey? -+ Dy o Epxy?, (18.7)
which satisfy Eq. (18.2) for arbitrary values of the coefficients.
The final results boil down to the following. The stress compo-

nents are determined by the formulas:

c(k
x) 6,.“_)(AI .I).\.)(lz.ql)y,_. S.,)' u(L:‘)--:O (18.8)

A T
(k:_:‘, 2, 60 0( ”);
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Jus :6/)131 l\‘(h"- EOEY (e by l)’f‘l,')}

“ Y /Iﬁl Ju‘ i
i1
k-1 . l
o 2{211 (b; -0 n)lfﬁl)'l (v b)) E(ll')]
i )
(k::2,3, ....n -1)
6Pk

‘:"ll'l)l == - s (Sl)' c SI) M

w  6rEm :
s g 1S = (0u -1 ¥) Sil (B 3).

Here we have introduced the designations:

n
S, = ..: (b bg_y) L"{lm:
. kel

n

S, == X (bh— bk EP, |

k=i
n1 3 3 k
Syx+ BBk B

S$:=48,S,-—38;.

The neutral axis 1s at a distance of

(18.9)

(18.10)

(18.11)

from the upper edge, it is impossible to predict which layer will con-

tain this axis.

The equation of the bent axis (i.e., the line into which the neu-

tral axls goes over in bending) has the same form as for a homogeneous

console with some digidity D:
P M
N = gb' (.tn — 3‘12x "}- 2['!) —_ "25 (x —_ 1)2.

This rigidity is determined by the formula:

(18.12)

(18.13)

For the curvature of the bent axis an expression coinciding with

that given by the elementary theory of bending is obtained:

(18.14)

We ncte.that aniong ‘all.elactic constants only Young's moduli for
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F(k)

the axial directions, Y1

enter all above-mentioned formulas. All
formulas simplify to a certain extent 1f the layers have the same
height equal to b/n. In particular, the rigidity formula (18.13) as-

sumes the form

D: . I,J (18.15)
JP where J = hb3/12 is the moment of inertia
( d of the section of the whole beam, and El
a 2 : 1s a constant connected with Young's modu-
i;"“‘*“-l___ e 11 in the following way:
Fig. 29
4 ﬁélﬂkt ﬁé/ﬂ“k3ke -3k 1) -3 [ iblﬂ“(?k--l)]z
AP ELRRE £ cmeeoem oo LA R
m 2 E{Y : (18.16)

The distance of the neutral axis from the upper edge is in this

case equal to

2"_‘, JARNPIE))
[N (18.17)

2n e

AR

k=1

For a beam soldered or glued together of two bands with heights

b1 and b — b1 (Fig. 29) we obtain:

(Ja '

W, 2T M - Px)y©2Sy - Sy

Cr hS ( )( ! 2 } (18.18)
E®

@ _ =1 ),

Or = '}:.(ll) & 0
6r£N

= g (S S |

C epE (18.19)

12}/:-.:’118"' (S, S - S )

Here
, ) C DML ey,
Sor b (- b)ED Sy BT ET E (18.20)

SeobLUEM 26, (b by @ bby | O ECE (e 0 O

Example. A" beam 1s composed of two bands with a height ratio of
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1:3, and a ratio of the moduli for the longitudinal directions of 1:9.

We must distinguish two cases.

Case 1. Egl) = El’ E;g) = 9E1, i.e., the upper, narrower band has
a lower Young's modulus.

Using formulas (18.11)-(18.20) we obtain the following results.

The neutral axis lies in the zone of the second band and its dis-

tance from the upper edge of the beam is Yo = 0.61F. Introducing the

abbreviations

we obtain the following values of the stress:s Oy and T, at the upper

face, on the contact surface of the bands, on the neutral line, and

near the lower face:

(G.(r!))ua-o r=—1,60m,  ()yeo=0;
(08 )y=t;1 == — 0,95m, ) -4 =—8,51m;
(yetis = (D) o= 0,32p; : (18.21)
(@), == 0, - (S y=y=—1,84p;

(OS))ynb =:9,35m, (-.‘f,’,)_,,cb = 0.

In a homogeneous console the maximum normal stress is equal to 6m

and the maximum tangential stress is equal to 1.5p.

v
o e
— O

O e

VO f'/ RN

7. 7.
]
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The distribution of the stresses or and Txy in the cross section
is shown in Filg. 30. The dotted lines are the curves showing the

stresses in a homogeneous console.

(1) (2)
1 E

Case 2. E = 9E1, 7 = EJ, i.e., the upper band has a higher

Young's modulus.

The neutral axis coinclides with the contact 1line of the bands Yo =

0.25b. The stresses at the characteristic points have the following

values:
)y 0 :- 12m, )y o 1 0;
" 2) .
@}M_%r=@tbum=;0, ' “%M m’(é;y v o Lo, (18.22)
(S p = Am, . GEyes: =0

The diagrams showing the distribution of the stresses 0, and T

in the cross section are shown in Fig. 31.

f;._l-. —_—
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: N
G N e
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\ 7 N 32
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Ll O e tol W R |8
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AN\t Y
%4 N K5
2 é- »\\ ‘"s 1
4~ ~\\ 313
A —\\ NI &
A——r N 3 [
4 ) N -~ -1
Yy 2m
Fig. 31 i
3
4
E

Comparing the dlagrams of Fig. 30 and 31 we may notice that the t
maximum stresses are obtained in a band with great Young's modulus. In
both cases the maximum normal stress in a composite console exceeds

(considerably enough) the maximur stress in the same homogeneous con-

sole.
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§19. BENDING OF A BEAM WITH VARIABLE MODULI OF EL.STICITY

In the preceding section we considered a beam in which the modu
of elasticity vary discontinuously along the height, i.e., when we p
from one layer to the neighboring one. It is not difficult to obtain
solution also for a beam with modulil of elasticity varying continuou
along the height. We restrict ourselves to the case of an orthotropi.
console with which the principal directions are parallel to the sides,
and which is bent by a force P and a moment M (Fig. 32).

We shall assume that the beam experiences small strains and is

governed by the equations of the generalized Hooke's law:

.()Il. . ] vy

de k,°$"'h5°u'

du_ vi 1 (19.1)
oy T % b g o

_.”. i o oq l o
y . 22 e Ty
1.’ E:z.’ \)

The stress components (the mean values over the thickness) satisfy

where E 12 Vs and G are arbitrary continuous functions of y.

the equilibrium conditions

03z Oty Otyy 03y 19.2
.d;..l. .ay .'0, -a~x—-- --()-y-'.' :0 ( 9' )

and the boundary conditions
npu y—:0, y:=b gy =gy ==0. (19.3)

Besides, in each cross section the stresses must balance the external

load; hence follow other three conditions:

b
1 a,dy: 0
_ P Jeas o

0

b
N i “ow)l([y .A’—”.P'F' (19.“)
N 0

b= T —»H \
B -l -

!
Fig. 32
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We shall assume that the greneral character of Lhe stress distribu-
tion in the given beam 'u the same as In o homopencous conpole, 1.e.,

o MO sy 0w, W) (19.5)

These expresslons satlsfy the equations of equillbrlium (19.2); the
unknown function f(y) will be determined from kEqs. (19.1) and the con-
ditions (19.3) and (19.4). From the first two equations (19.1) we find
the displacements; they will be expressed In terms of f(y). Requiring
that u and v satisfy also the third equation (19.1) we obtain the equa-

tion

/o o (19.6)

1
Hence we find the expression ror the function f(y):
F(v) rf/;',y,/y | ,/j Iody | e, (19.7)

where ¢, d, e are arbltrary constants. All arbitrary constants will be
determined from the conditions (19.3) and (18.4). As a result we obtain

the following final expressions for the stress components:

6 (A Py . o
v e ( i v, ) (O2S,y S, )
v (19.8)
6r | . e .
uitpg | OIS Sy
0

Here
b b
S j Iy, S, .2 f Iydy,
0 0
b b b s (19.9)
S 12 [ f Iijdy . f Iy dy (J‘ I"l.\' (l)») l l
: 7] [\] v .
The neutral axis where ox = (0 is at a distance of
S,
Myt Zﬂ‘ (19.10)
from the upper face. -
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The expressions for the displacements which we shall not present
here show that a console with variable modulil 1is bent, as a homogeneous

console with a rigidity D equal to

Do (19.11)
and Eq. (18.12) and formula (18.14) prove to hold for it.

Only Young's modulus E1 for the axial direction x enters the for-
mulas for the stresses and the rigidity; the rest of the moduli of
elasticity are not selected in the values of the stresses and the ri-
gldity. The displacements u and v of any point off from the neutral ax-
is will depend on G and Vi the modulus EZ’ however, will not enter any
formulas.*

Let, e.g., the modulus El vary along the height symmetrically with

respect to the geometrical axis of the beam and be expressed by a quad-

ratic function of y:

U4

E .
By == L1 -] 435 (29 —-b)% (19.12)
For such a beam the neutral line colncides with the geometrical axis

y = b/2. The stress components will be determined by the formulas:

i -[/-“’. oy s z] 2y 1
°= ne* (EQ -|- 0,052, “id 4w(.y. 2| (2y—0b),

y==0, ' | L (19.13)

4
6P o . El q]

= e | V- (02 - 20y-1- 29%) [ (by -~ 3)-
ne* (£ -|- 0,15E [ g @ y-1-2y7) | (by --3%) J

For the rigidity we obtain the formula

D::F,J, (19.14)
where J 1s the moment of inertia of the cross section and
E, = E}- 0,155, (19.15)
Example. The Young's modulus of a beam for the axial direction is

given by formula (19.12) where the ratio of its maximum value to its
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minimum value 1s equal to 5. Two cases are here possible.
1) The maximum value E, is at the outer edges;
(Ex)yw'-—': s(ﬁl)y..b/z. EI,= 163?.

The nermal stress in each section achieves the maximum values at

the beam edges, and the tangential stress on the neutral axis. Putting

Opne = 8,82m, Thae == 1,32p. (19.16)
The diagram of the distribution of the stresses O and Txy in the
cross sections is shown in Fig. 33 (the dotted lines show the variation
of the stresses 1In a homogeneous beam, for which O

= 1.5p).

= 6m, 1 =

ax maXx

2) The maximum value of El is on the natural axis;
(Ey)yoo==0.2(E ) e Ey==-—3,2E).
The maximum value of the tangential stress 1s obtained on the neu-

tral axis, and the normal stress attains the maximum values at the

points of the section which are at a distance of 0.18b from the outer

edges:
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Opnx® - 4,96, Tung - 173D, (19.17)
At the points y = C and y = b
oyt 11 2,3m, w0 (19.18)
The distribution of the stresses, in particular the normal ones, dif-
fers remarkably from the distribution in the preceding case; it 1s gi

en in PFig. 34.

§20. THE DEFORMATION OF A WEDGE-SHAPED CONSOLE BY A FORCE APPLIED TO
ITS TOP

Let us consider the elastic equilibrium of a wedge-shaped consolc
of rectangular cross section in which the broad end is rigidly fixed,
under the action of a force P applied to its top. It 1s assumed that
the console material is homogeneous and anisotropic, but generally not
ofthotropic (the existence of planes of elastic symmetry parallel to
the mid surface is always assumed).

We shall regard the console as an infinite wedge, i.e., as a body
whose region is limited by two infinite straight lines starting from
the top 0. We shall choose the wedge top to be the origin of coordl-
nates and place the z axis arbitrarily in the mid plane; we shall also
use polar coordinates, counting the polar angles 6 from the x axis. We
shall designate the angles of inclination of the faces to the z axis
by wl and w2 (obviously, the angle at the top 1is equal to wl + w2) and
the angle of inclination of the force tu the z axis by w (Fig. 35).

The problem consists in choosing such a solution of Eq. (5.10)
which permits the equilibrium conditions and the conditions on the fac-

es to be satisfied:

for B =z - "lbl and 0 = = '_})2

de: :“ﬂ:':Ol (20.1)

and will determine the stress components tending to zero with increas-

ing distance from the top.
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As 1s shown by an investigation* the stress function giving the
solution of the problem has the form
Foesrd(h), (20.2)
where ¢1 i1s a function of the polar angle only, which will be found
from Eq. (5.10). To determine this function Eq. (5.10) should be writ-
ten in the symbolic form (7.2):
D,D,D,D,F - - 0. (20.3)
The operators Dk in polar coordinates assume the form

Dy = - (sinh n, cosh) jr } (cosh | My sin_!)).: _(%— (20 u)
' (k--1,2 3, 4).

The function ¢1 will be determined in four stages, by successive
integration of four first-order equations after which the stress compo-

nents in polar coordinates will be found from the formulas:

G, -

| o, 0 9F . 0 (F
v Tor U et

g T T gr 0 }J' (20.5)

Omitting all inte-medlate calculations we shall present the final
formulas for these stresses:

boAcosd | Bamd

° L) ’

Sq° 2T, 0, (20-6)

where
L)y  apcosth o Qacinficos®™ | (Qay, -

-ag)sin”eos?  2a, sintheosh |oa,, sint 0. (20.7)

Cbviously, the boundary conditions (20.1) are fulfilled, and the
stress tends to zero with increasing distance from the point where the
force 1s applied.

The arbitrary constants A4 and B are determined from the equilibri-
um conditions of the wedge part cut out by a circular section of arbi-
trary radius r described from the top as the center (the dotted line in

Fig. 35). We obtain the following equations for these constants:
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A i .\'m.() cos 0 i B |'. i 0 0 P
1L dh | L0 ( S
Y -,

(h 18 the wedge thickness).

The calculations simplify if the console is orthotropic and the

direction of its axis coincides with the principal one. Then

Lo (G W (200

In the given case the function L(6) is the reciprocal value of
Young's modulus EP for the radial direction L = 1/Er [see the first
formula (9.10) where we must put ¢ = 6].

The calculation of the integrals entering Eqs. (20.8) for an or-
thotropic wedge is not very laborious. We present here the expressions
of the corresponding indefinite integrals for the case where the com-
plex parameters are purely imaginary anrd unequal:

YRR TR TR T2

-— .l - - .
an (-

}y J E ocosthdl: - (Zarcty (g h)  sacty (3t 0)],

20 Atein 0
[ == [I;‘,six-’)cos’)rl’l:_: ! N T b sin } (20.10)

20y (: REA R TITE L B RSN

/.- ‘-° L2 dn - - 1 L ' Sl (9 e () .l..‘ Ao (6 Loy
: J 1, 1.2 00 G a__)[ ;_’nnlh(. e ) | a"db(( L 0) 4.

The formulas for the stresses in the case of equal complex param-
eters (py == -9) and in case 3 (R pi. py==- -a-l-3) may always be ob-
tained from the formulas for the case of purely imaginary unequal pa-
rameters by passing to the 1imit, § tending to B, or, respectively, by
replacing B and § by the quantities B + aZz and B — at.

We must make the following remarks with respect to the general
character of the stress distribution. The stress distribution in a

wedge which is deformed by a force is "radial" or "ray-like"; the radi-

al stress o, at an arbitrary point is, at the same time, the principal

- 96 -

B g P TIL T L ST LR Lo bizeneiitoont bt g
= s Sy g T T e o e RO (o . s e S ke % b = >
e T dh g e BRI faatane it £l L n D i o L et S e W ke AN




P T

stress, whereas the other principal stress Og acting on the radial sur-
face 1s equal to zero. According to the relationship between the elas-

tic constants and the angle of inclination w three cases are possible:

Figz., %u. A) Compression; B) stretching.

1) all parts of the wedge are compressed, 2) all parts of the wedge are
stretched, and 3) there is a neutral line on which all stresses vanish
in the region of the wedge; on one side of the neutral line the materi-
al is compressed and on the other one it is stretched (Fig. 36abc).

The position of the neutral line with respect to the z axis is de-
termined by the angle 6 for which

tg =2 . (20.11)

The polnts where the principal stress o, has the same value 0>
positive or negative, lie on a fourth-order curve; on one side of the
neutral line there are the curves corresponding to the compressive
stresses (negative 00), and on the other side the curves corresponding
to the stretching stresses (positive 00). The equation of the family of

curves of equal stresses in Cartesian coordinates have the form

8y, %t - 20,688y | (20| 0gg) X2y - 2055XY° 4= gyt —
! . (20.12)
’_—a; (.\:2 'l'y’) (.4.\' -l— B)I) 2 88 0.
These curves are always closed although only some arcs lie 1in the
region of the wedge; they all pass through the top and touch the neu-

tral line at this point. We shall encounter on other curves of this

type in the following chapter.

- 97 -

e e e b e e g S Tt e e A s s i T i i b Rl et




s‘;

A

For a console of an isotropic material the stress components wi
be found from the formulas (the x axis is placed along the axis of s)

metry, the angle at the top is equal to 2¢):

2P {cos mcos O sl o st 0

R A I ) eeeras0. (20.13)
The curves of equal stresses become circles passing through the
top and touching the neutral axis.
We note that 1n a wedge with cylindrical anisotropy (with a pole
of anisotropy at the top) the stress distribution due to a force does
not depend on the elastic constants and exactly coincides with the di-

tribution in an isotropic wedge of the same form [formulas (20.13)].

§21. THE BENDING OF A WEDGE-SHAPED CONSOLE BY A MOMENT

Let a wedge-shaped console as considered in §20 be bent by a mo-

ment M applied to the top.

We shall place the polar axis x along the symmetry axis of the

wedge. The angle at the top will be designated by 2¢ (Fig. 37). As be
fore, we consider the console as an infinite wedge. On the faces the
following conditions must be fulfilled: for 6 = +y
0p==0, 7,4 =.0; (21.1)

besides, the stress components must tend to zero with increasing dis-
tance from the top. The stress function which makes 1t possible to sat-
isfy these conditions and the equilibrium conditions has the form#*

F == 0y (0) (21.2)
(i1t does not depend on r). With the help

of the symbolic representation (20.3) of

the equation for the stress function the
function ¢O will be determined in four

stages by integrating four first-order
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equations.

As a result we obtain the following formulas for the stress compo-

nents satisfying the conditions (21.1):
Af2sman . PN
Py [; 2‘“) -1 (LO.._Q’) cos 2 ) L2 ("j] . ]

a5+ -0, (21.3)
A cos20. -cos Qv
TG L) T

Here

L{h)y acosth - Qugsinficosh
A Qaga 1oag)sit2cos?h 2a,sitthcosh {oag,sintd L (21, 0)

’ dl
l. ('))' ;(70 .

The constant 4 will be determined from the equilibrium conditions

of the wedge part cut out by a circular section (the dotted line in

Fig. 37) and proves to be equal to

A M i

I
cos 20 - cos 27 (21.
j = 5)

In the case of an orthotropic console, in which the principal di-
rection coincides with the direction of the geometrical axis z and the
complex parameters are purely imaginary and unequal we have:

[eos2 2082 iy 1y sint y — fycosty (21.6)

where I1 and I3 are integrals to be calculated from the formulas
(20.10).

If the principal direction in an orthotropic console does not co-
incide with the direction of the geometrical axis it is more convenient
to choose 1t as the direction of the x axis; instead of (21.3) we ob-
tain somewhat more complex formulas.

With respect to the general character of the stress distribution
we must note that when the bending is carried out by a moment this dis-

~tribution.is no longer "racdial" (the tangential stress T,9 is not equal

- 99 -

asidatialaban




-

5 Nl B ) D R

s Rt A s e

PR WS TRT e
T TR e

to zero, and, therefore, ., is not a principal stress). If in the case
of console deformation by a force the stresses varied inversely propor-
tionally to the distance from the point where the force is applied then
the decrease of the stresses in the case of deformation under the ac-
tion of a moment of flexure will be more rapid: they vary inversely
proportionally to the square of the distance from the point where the

moment 1is applied.

In an isotropic console the stress distribution is determined by

the formulas:

e e, I

T h(sin 29 — 2V cos2y) Rt

Gy == 0. a ( 2 1 . 7 )
P —— . 0520 - cos 23

M T (sin 2570028 cos 29) r )

If the wedge has cylindrical anisotropy and the pole of anisotropy
coincides with the top the equations of the generalized Hooke's law
will be written for it in the form (12.6). The stress function for such
a wedge satisfies Eq. (12.9) where U = 0, and in the case of bending by
a moment (Fig. 37) has the form

F =@y ()= (Acosnh | Bsinalb)er p Cet-f- D, (21.8)
where 8 and m + ni are the roots of the equation
087420657 - Qayy - 20y, |oag)s | 2(ag |oagg) 0. (21.9)
In particular, for an orthotroplc wedge with cylindrical anisotropy
F=Acosnh-{- Bsinnh | Ch-|-D, (21.10)

where

o 1 2y |- ag
n = '/—2 'l" “{l.:llil_n!{ * (21 . 11)

The constants A, B, C are determined as in the case of a homogene-

ous wedge, from the conditions on the faces and the equilibrium condi-

tions.
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§22. THE BENDING OF A WEDGE-SHAPED CONSOLE BY A DISTRIBUTED LOAD
Combining stress functions of the form

ook, (). (22.1)

where

k =2, 3, ..., the stresses in a wedre-shaped console along whose
faces a load piven in the form of an algebraic function of the distance

r 1s distributed may be obtained. If, e.;;., a load given by the formula

n

TR ;ﬁ gt (22.2)
v 1

)

is dlstributed alongs tne whole length of the

face the corresponding stress function must be

Fig. 389 assumed in the torm of the sum

ny2

I ‘\_“' I"'l’/. (4)). (22. 3)
k-2

In particular, for a console bent by a uniformly distributed load
¢ (per unit length) the solution is found with the help of a stress
function of the form#*

I, (). (22.h)
If the x axis 1is placed arbitrarily (Fiy. 38) the conditions on

the faces will be written in the following way:

for " o w ot O (22.5)
for 0. Zl:);, gy - Z-‘ "?: - 0.

For the function ¢2 we obtain the expression
Py(n) Acos20 | RBsin20 L Co(B) 1D, (22.6)

4, B, C, D are here arbitrary constants, and ¥#(8) is a function of the
angle 8 of rather complex structure. Tn the yeneral case, if the com-

plex parameters have the form:

and we introduce the designations

a- &,k

P - _
a? g a? | £ ' R -

R L

{
|
*
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we obtain the following expression for 9:

2(0)  bd{(a -o)sin®h - (a® o] 6T d)sinhcosh-
Sle(a? 0% a(-] @) cos?0) X

st | 2asin0cos0 | (02 ] 7)) cos20
X n- - . - e -
sin?l | 2estmnbcos0 | (¢2 ] ') cosd0

~d{A(a )0 (sinh | acos0)cosh-|-
e o] d® DR [sin®0 -] 2asinhcosl | (o - b%)cos?l}) X (22.8)
bcos 0
XMUF stn0-]-acos b .
—-lla o] b AP [sin0 | 2csinOcosh | (e? - d?)cos?0}) X
dcos 0
Xarelg - o) e 67
The general formulas for the stress components have the form:

1 b(Aa  )d(sin 0| ccosDycosh -

9,72~ 2Acos20 - 2Bsin20 | C(2p |- 9"} D, )
oy 2(Acos29-|-Bsin20-f Cs-}- D), (22.9)
T 24sin20 —2Bcos 20 - Co’.’

The constants A, B, ¢, D wlill be determined from the boundary cc
ditions (22.5); the final expressions are complex, and we cannot give
them here. The stresses in a console bent by a uniformly distributed
load do not depend on the distance r.

For a console of an orthotroplic material the expression for the
function @®1s simpler, but in the case of an isotropic material a = ¢ =
=0, b =d=1, and we obtain the quite simple function = 0.

The stress functlon for an 1lsotroplc console has the form:

F =:r2(Acos2)-4- Bsin 20 -} CY-{- D). (22.10)

Among other cases of bending of a console by a continuously dis-
tributed load we mention the bending by rormal forces varying according
to a linear law q = q% (Fig. 39), takling account of the proper weight.
In thls case the stress distributlon in an anisotropic console exactly

coincldes with the distribution of the same 1sotropic console. This is
the case because

Fozr™Py(0)--= AxS- | Baly |-
3 Gyl Dy (22.11)

for arbitrary values of the constants 1s a solutlon both of Eq. (5.10;
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and the blilharmonic equuation. If the loaded side is horizontal then 1
any homogeneous concole, both anisotropic and isotropic, shown in Fi
59, the strecsces due to the external load with account taken of the

rroper welgrht will be determined from the formulas:

Q9 T o
0 :|,1?H”H|!H—!?H N % (/L ¢l & l T)Cl-:: ?';’('\' ?)'“1: :)'.‘)' ‘l
\\,\ l'
| W s (22.12)
J
\\\ T T e 0 o) el O
; 2y /l o“.’l [ t:\’r’ .V

Lo tTa Lhe Onsce b iebt, oy Io Lthe specific weipht of the material).
The antgsotropy of the racterial will only influernce the strains and d
placements whore exyrescions will depend on the elastic constants.

The soluticon tor the general case of bending of an anisotropic
consele under the action of a load distributed along the faces accord
ini Lo an arbitrary law or i~iven in the form of concentrated fecrces v =
chtained by V.M. Abramov.¥ The console was reparded as an infinite
voedee; the solution was found with the halp of a Mellin integral and
Lhe stress components are represented in the form of integrals.

inothcr methed of solving this problem was proposed by P.P. Kufa-
rev¥¥: the expressions for the stresses are also represented in the
form of integrals with infinite limits. The general solutions mentioned
vwere not led to numerical results, as yet.

All things 5ot forth, with appropriate variations in details, may
be referred 2lso to a wedge with cylindrical anisotropy with which the
role of anisotropy colneldes with the top. In the case of bending by a
miform lo~i, e.i., (Mig. 33) the stress function has the form:

/ gy T Yo s Beinaye 29 Ce 2t on), (22.13)
3, moand » have the surne values as for the wedge bent by a mome: t
| ¢ . (1.9 . T particular, for an orthotropic wedge with cylin-
rical asymmetry we obtain:
! (Voo D Banah O D), Coo0 1)
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§23. PURE BENDING OF A CURVED GIRDER WITH CYLINDRICAL ANISOTROPY

Let us consider the elastic equilibrium of a curved girder in the
form of a part of a plane circular ring under the action of forces ap-
plied to the ends and reduced to moments. We assume that the girder has
the property of cylindrical anisotropy in which case the pole of aniso-
tropy 1s at the common center of the circles whose arcs form the outer
and the inner edges of the girder. Besides the planes of elastic symme-
try parallel to the mid surface we do not assume any elements of elas-
tic symmetry. Fig. 40 shows a section of the girder through the mid
plane. The pole of anisotropy is assumed to be the origin of coordi-
nates, the polar axis z is directed along the axis of symmetry. We
: shall designate by a and b the inside and
1" the outside radii, by e the ratio a/b, by h
the thickness of the girder, and by ¥ the

value of the moments. We shall assume the

angle between the end radii to have an arbi-

trary value smaller than 2w.

The equations of the generalized
Hooke's law will be written in the form:

Er-_-—"n”r"}:"n";"*‘”xcﬁ-". )
€, =2 00,3, | 04,3, -] ag1, } (23.1)

Ty =2 @5, - |- Qg1 aggs,,
The stress components (mean values over the thickness) are ex-

pressed in terms of the stress function F(r, 8) according to the formu-

las (12.8) where U = 0, and the function F satisfies Eq. (12.9) (where

we also must put U 0). The conditions on line constituting the girder
outline are obvious: on the curves r»r = a and »r = b the stresses are
equal to zero, and at the ends the stresses are reduced to the moments

Ml
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The solution is obtained with the help of the function F which
does not depend on the polar angle 6.% The function looks as follows:

Foofo(r) A | Bt Crivk | poues, (23.2)

where

f k ‘/f,‘,‘_- ;/i‘ (23.3)

: and Er’ E'e are Young's moduli for the stretching (compression) in the
radial and tangential directions r and 6 which are, in general, no
principal directions of elasticity.

Having determined the constants from the boundary conditions we

4 obtain the following final expressions for the stress components:

- k .
L, 4}_[1- '1:~ciil(f) oLkt (,|l +1
r bhg 1- ¢k \b T ek

s WMy l'_".."'.'!/-(.’>k".| - ok [Iol A"J (23.14)
] T g BN TR Y 1- ¢k

'.,-‘-'50.‘
3
p Here
|- ko (L-cki) ke (L-ckene
: CAa R S T B LAV s v (23.5)

é The stress distribution obtained is the same for all cross (radi-

al) sections and depends only on the ratio of the constants a 1/a22.
The normal stress Og in the cross section is neither governed by a lin-

ear, nor a hyperbolic law.

The normal stresses on the outer and inner contours are equal to:

M1 R 2kt (1] Ry e (23.6)
(G')b";'mbflzg o 1-"etk '

M (L Rk AUl Vo A1} k)
(G0)a = brhg T T 1 -k (23.7)

One of these values will be the maximum for the whole girder, but

which cannot be indicated beforehand if the numerical value of k¥ is un-

known. The displacements U,s Ug in the radial and tangential directions

may easily be determined from Egs. (23.1). ' :
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We note that 1n the case where g

l.e., £ = EB’ k=1

11 = %9 r

formulas for the stresses colncide exactly with the formulas for the

isotropic girderk:

g, 'b.}/tL, [C'Iln c[l (Ir))"] (I ) i}' )
o b';fl:,[l | c'?hlc[] l (f)gj n ‘.t')l"ﬁ_}_ (23.8)
nto 0, : :

where

g:.;(! '.2'4"3)2~ -c?(Inc)x (23.9)

§24. THE BENDING OF A CURVED CURVILINEAR-ANISOTROPIC GIRDER BY A FORC .
APPLIED TO ITS END

Let a curved girder having the shape of a part of a plane circu.ar
ring be fixed at one end and be deformed by forces distributed at th:
other end and resulting in a force P applied to the center of the se -
tion. It 1s assumed that the girder has the property of cylindrical
anisotropy with the pole in the center of the circles whose arcs form
the girder outline. We shall choose the pole to be the origin of coor-
dinates, place the polar axls x along the radius corresponding to the
loaded end, and designate by w the angle of inclination of the force to
the = axis (Fig. 41). The value of the angle between the end sections
will be assumed arbitrary, but not more than 2m.

To start with, we shall concentirate our attention on the case of
an orthotropic girder with cylindrical anisotropy which, besides the

plane of elastic symmetry parallel to the mid plane has two other ones

16
= Agp = 0 and the equations of the generalized Hooke's law may be wr %-

at each polnt: the radial and the tangential one. In thils case a

ten in the form (12.10):
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Trr: ’“'57,9

(the dashes over the denotations for the stresses and strains are omif
ted).

To determine the stress function F we use Eq. (12.11) in which U =
= 0 must be put. The solution 1s obtained with the help of a stress

function of the form#

I fi(r)cosh | Li)sint o Gttt opetd | Cr |- Drinrycost |
(AP LB A | D ) sin (24.2)
A, B, ..., D' are here arbitrary constants and

'l ] I‘ ")-( ':'7I I lv'- ) --7:‘- B oy -_i::‘
3 l/] y ay a:; U l/ ] —l"l:‘z(‘ . QV')'I‘U:&' (24.3)

Having determined all constants from the conditions at the bound-
aries r = a and » = b, where 0,=T1 = 0, and requiring that the

stresses at the free end result in a force P we obtain:

5, ° Izl:(;l . f [(—2)3 | ¢ (f)a - e c-‘J sin(h-]-w),
%"b;;;'f[“"e)ch‘ (l-ﬁ)(f)%? 1 ﬂ]gum Lo) § (24.4)
SpEe - b/{;’n o [r) [(Z )ﬁ |- c? ([r))ﬁ == ] com c-’] cos (4 - |- w).

here the denotations:

We have used

frg L :-g-(l-- ) (l~]-c3)lllc. (24.5)

The normal stresses obtained
are maximum in the girder section
perpendicular to the line of action
of the force; 1n these sectilons the
tangential stresses vanish. *#*

The tangentlal stresses attain
maximum absolute values in the sec-~
tions on the line of action of the
force; the normal stresses are there
equal to zero. In any given section

6 = eo the normal stress oe willl be

obtained maximum near the ilnner
boundary r = a; it is ean=1 !
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(24.6)

If the elastic constants of an orthotropic girder satisfy the con-

dition

E E
E(—2) 451 =3, (24.7)

then B = 2 and the stress distribution will be exactly the same as is

obtalned in an isotropic girder¥:

TS I S T T T— — r

°'=FI%[%+C2 (%),—(l +c2)—g-] sin (b + w),

' P b\ L b1 (24.8)
) | o‘=m[3—:’-—c2(7) —(l—rf;2).’_]sm((.)+m),
z",=.—-wpg_;[%'+cz (%)’_(1+C2)_f.]cos(0+m);
| g =1—c+(+cnc (24.9)

A.S. Kosmodamianskly studied the more general case where the gir-
der shown in Fig. 41 is not orthotropic [the coefficients 16 and 26
of Egqs. (23.1) are not equal to zero, and the stress function satis-
fies Eq. (12.9) where U = 0]. The solution for this case is found with

: the help of the stress function¥*#
F = (Art+#+si  Bri-+ei 4 Cr + Drinr)e¥

' - - = = ' (24.10)

1 : 4-(Art+8-«i  Brt-3-2t -Cr+ Drlnr) e-Y.

él A, B, C, D are here arbitrary constants, generally complex, to be de-
g termined from the boundary conditions and the conditions at the free
? end; 4, B, C, D are the conjugate quantitiles;
- . an4-2a;5+ as - (322
i *=an’ p—l/“l‘———a,, (). (24.11)

A.S. Kosmodamianskiy considered also numerical examples and constructed
3 diagrams of the stress distribution in the sections of a nonorthotropic
1 girder with given elastic constants for several values of the ratio e.

3 The analysis of the results obtained enabled him to make a number of

conclusions the most important of which boil down to the following: .

1) the maximum value of the stress 0q by far exceeds the maximum
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values of 0. and T8 and is obtained, as in the case of the orthotropic

girder, at the inner boundary of the section (for r = a);

2) the constant a6 does not affect the value of the stresses;

3) with decreasing ratio b/a the distribution law of the normal
stresses acrcss the section 1pproaches a linear one, and the distribu-

tion law of the tangential stresses tends to a parabolic one.

§25. THE BENDING OF A CURVED CURVILINEAR-ANISOTROPIC GIRDER UNDER A
DISTRIBUTED LOAD

The solution of the problem of the bending of a curved girder un-
der a load uniformly distributed along the curvilinear edge may be ob-
tained with the help of a stress function in the form of a sum

F = fo(r) 4 f, (r) cos 8 + f{(r)sin b. (25.1)

The first term has the form (23.2), and the second and the third

ones are determined by Formula (24.2) for an orthotropic girder, and for

a nonorthotropic one by Formula (24.10). All constants will be found
from the boundary conditions which can always be satisfied exactly at
the curvilinear boundaries, while at the ends the filfillment is ap-

proximate.

Let us consider as an example an orthotropic girder with cylindri-

cal anisotropy, supported at the ends and bent by a normal load which

is uniformly distributed along the outer boundary (Fig. 42). The common

center of the circles bounding the girder which 1s at the same time al-

so the pole of anisotropy will be chosen to be the origin of coordi-

nates, and the axis of symmetry will be identified with the polar axis

x. We shall assume that both supports are hinged and designed such that

the support reactions form the same angles ¥ with the axis of symmetry.
We shall designate by g the load per unit length and by 29 the angle

between the end sections of the girder which is, in general, not equal

- 109 -

" e b st e B e AL gL gy et ez fan e ek G b e ph e et b el gl iR 4 207 Saala bl L iy

0 it A s g Td e




to 24 (tp <%)

The boundary conditions on the curvilinear sides have the form:

for r=a ¢,==0, t,,=0;
(25.2)

for r==0 c,:—-——%—. t,y:==0.

At the ends the stresses will result in a radial force (reactio:

R and in a tangential force Re; the following conditions must be ful-
filled there:

for g==9¢

1

h cos ¢ !

J‘o,rdr=0. (25.3)

R 5 singcos (9 —9)
J't,ndr—“‘ r=j+qh ?cos(; .

Putting fi = 0 we determine the con-

¢
ig
\ 7 stants entering expression (25.1) from the
\

conditions (25.2) and (25.3) and obtain the

followling final formulas for the stresses:

= fprals) R () et G
+c’( )—(l+ o) e a D eost,
o.=%[P+Qk(;) —Ri(1 ]-{-k,”g,1 (25.4)
x 2o+ (5)+ (l—a)cﬂ(—) — (] 5= cose,
um sl () 40 2 20

Here we have used the designations:

- 110 -




FRTUP TN [ 70 I W R Sy

P=2“L4ﬁb_amngW—IXLf@n*+
2k 1) A1 — A1) — (R — 1)(1 ) (1 — cH)m)
Q=2(k-— l)(ll_.c'.'k)g [— (A—1)(1 —c?)—2kc? (1 — k-1
+ k=11 4c)(} —ck+)m], (25.5)
2(’¢+l)(ll—c'.'n)g [(R4-1) e (1~ ¢?)---2hck+1 (1--ck41) —
—(k+l)(l+c)czkkl—c' Ky m),

singsin (g — &) | .
cos ¢ i J

R=

= mn==

<|a

k, g, B and g, are, respectively, determined from the formulas (23.3),
(23.5), (24.3), and (24.5).

The normal stresses Og in an arbitrary section 6 = 80 attain thce
maximum values either at the inner boundary r = a or at the outer one
r = b according to relationships between the parameters k, B and other

param=ters entering formulas (25.4)-(25.5). At these points we have:

(c,)a=%(P+ch"-l—-ch-k—x),_%(l_ By cos (Gl ) PO B (25.6)

cos

(c.,)b=%(P+Qk—Rle)—|—'%(vl—ca)‘L&E_‘flcoseo. (25.7)

For an isotropic girder we obtain the following formulas instead

of the formulas (25.4) and (25.5):

=-Z-[P+Q+2an—+R( )]+ ' 1
gl g

—Z[ +3Q+2Qin s —R(% ]+ (25.8)

(24 ]
" =F‘7_[Lb'_ (_) —(1+¢?) ]?i%%ﬂsxnﬂ,

P=—4l [2(1 —c?)—4c?lnc—A4c%(Inc)® -+ ' 1
-+ 2c2(1 +c)mlnc—(l—c2)(l+c)m],
Q=-—%j—{h—ﬂy+2dmc+4l—wﬂu-FQmL ' (25.9)

R= ——%[—(1—cz)—|—21nc—2(l+c)mlnc]

[the expressions for g and g, have the forms (23.9) and (24.9)].

At the end points of the section 6 = 60 of an isotropic girder the
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normal stresses are equal to:

(°s)a=wqg (2@ —-c’)l'nc——(l—}-‘c)(l —c2}-21Inc)m)—

(25.10)
27 €os (? — %) .
gD Ty
(3,), ='7£_&_" (11— c’)" F4c2(ine)r—2(1 + c)(! —c -2t Inc)m] -+
(25.11)

2 cos (3 —¥)
+ T;} (1 — %) =osg <08 Oyl

If the device of the supports is such that the reactions to them

have parallel directions we obtain ¢=0, m=1; the formulas for the

stresses simplify a little.

For a semicircle arc supported at the ends as shown in Fig. 43 and

loaded by a uniform normal pressure we have:
p=g, $=0 m=1,
cos(p—¢)=0. .
The stress components will not de-

pend on the angle 6 and will be found from

the formulas:

=il o) |
mtlrs o ) ) 125
‘n==p- ' o .

The coefficients P, @, R are determined from the formulas (25.5)

in which we must put m = 1.

It 1s relatively easy to obtain a solution also for the general
case where the curved girder having the form of a part of a plane ring
is deformed by normal and tangential forces distributed along the cur-
vilinear sides in an arbitrary manner. Each of the given forces ‘nust be

espanded in a Fourier series, 1.e., represented in the form
Jo+ ) (gucosnli g, sin nb). (25.13)
n= .
The stress function must be sought in the form
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F = fo(r)+ CY—+ Arbsin0 - Br0cos0 + | .

-+ gj Lf,, (r) cos n) -} f(r) sin ub]. (25.14) |
n=1

Each of the functions fn(r) and f;(r) will be determined from ordinary
differential equations which are obtained on the basis of Eq. (12.9)

Lor (12.11) in the case of an orthotropic girder]. All constants enter-‘
ing expression (25.14) will be found from the conditions on the curvi-
linear sides and at the ends; the first conditions can always be exact-

ly satisfied, the second one only in an approximate manner.

§26. THE STRESS DISTRIBUTION IN A RING-SHAPED PLATE WITH CYLINDRICAL
ANISOTROPY

Let us consider the elastic equilibrium of a plate having the
shape of a whole circular concentric ring with cylindrical anisotror -
and compressed along the outside and inside outlines by uniformly dis-
tributed normal forces. We shall assume that the pole of anisotropy co-
incides with the ring center and that there are no elements of elastic
symmetry except for the planes parallel to the mid plane. Having solved
this problem we shall in the same way obtain the solution of an analo-
gous problem concerning the stress dis-
tribution in a tube of a material with
cylindrical anisotropy, under the action

of internal and external pressures. The

latter problem for a tube with cylindri-

cal anisotropy of a special form was
solved by Saint Venant and Voigt.*

As was already indicated we consider

Pig. Ul the more general case of a nonorthotropic
ring to which corresponds a nonorthotrop- i
ic tube. ﬁ
3
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Choosing the pole of anisotropy (the ring center) to be the orig
of coordinates we shall place the polar axls x arbitrarily (Fig. ui).
Ve shall designate by p and g the values of the internal and external
pressure per unit of surface and by a and » the inside and outside re¢
dii of the ring.

The stresses will be found with the help of the stress function

(23.2) independent of 6 and represented by the formulas#

K+t k-1 k-1 5y k+1
c — r —_
a,_—_—ﬁ__kg.(?) — =9 ks (i) :

1—¢? 1 —c2 Ar
— k- . k4t
.c.__p;' c“qk() +p qc k"“(f) ' (26.1)
f,)==0.
Here
& L,/ _ A,
=%, k= - E (26.2)

The distribution of the stresses 1s the same for all radial sec-
tions and depends only on the ratio of the Young's moduli for stretch-
ing (compression) in the tangential and radial directions. The stress
distribution obtained 1s the same both in an orthotropic ard a nonor-
thotropic ring for which a6 and a,e are not equal to zero. The influ-
ence of the radial planes of elastic symmetry willl show up only after
deformation: 1if there are such planes the radial sections remain plane;
if there are no such planes the radial sections are distorted.

The displacements of the plate polats 1in radial and tangential di-
rections U, and Ug will bLe found from Egs. (23.1) expressing the gener-
alized Hooke's law. We present the formulas for the displacements 1in an
orthotropis plate ("rigid" displacements not accompanied by deformation

are eliminated):

a'=mb?c_2’z)[(pck“‘—4)(k——v’.) (g_)k_*_
+(p—gek-1y e+t (k) (%)k] 1263

gy == 0.
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Vg are here elastic constants for the directions r, 6 (the princ

EG’

pal directions) from the equations of the generalized Hooke's law
(24.1).

If the anisotropic material has Young's moduli equal for the ra
al and tangential directions the stress distribution cbtalned is the

same as in an isotropic ring. Putting k = 1 we obtain the well-known

Lame solution from formulas (26.1)%:

1—¢2 l—c?

- P’—q 2 AU
9y == - = +l__c2 (7). (26 )
Ty ==0.

0, = Pl—gq _p—q c? (ﬁ.)2
r ]
b

One special case is worth mentloning. If we put e = 0 and p 0

in formulas (26.1) we obtain the stress distribution in a solid disk

with cylindrical anisotropy compressed on the edge by normal forces g:

?,::——q(%)k-l, 'a,=—qk (—g—)k_i- ,9==0. (26.5)

In an 1sotropic disk the material will be compressed uniformly,
but in a curvilinear-anisotropic disk the stresses will vary along the
diameter. For disks of materials for which Ey>E, £k>1 and the stresses
decrease the necarer we get to the center, and 1n the center become ze-
ro. If, however, Ee < Er then k¥ < 1 and, as is seen from formulas
(26.5), the stresses will tend to infinity with decreasing diztance
from the center, and, close to the center, 1l.e., the center of aniso-

tropy, a stress concentration takes place. The curves giving the stres

distribution of oL and Oq along the disk diameter are shown in Fig. U

for k = 1, k > 1 and k < 1.
The formulas for the stresses in a tube with cylindrical aniso-

tropy under the actlon of internal and external pressures p and g have

the form (26.1), but for a tube

k_‘/-ﬂn l/-“u“sa—“z:io (26.6)

Apell33 —ay
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Besides, in the cross sections of a tube with fixed ends acts a

normal pressure
1
°:='—7;(“m°r"_}‘azs°o)- (26.7)

With the help of a stress function

<

of the form (25.14) the solution for the
general case of elastic equilibrium of a
ring may be obtained when arbitrary nor-
mal and tangential forces (fulfl? .ing the

equilibrium conditions) are distributed

along 1ts inside and outside boundaries

| ; -l
aywov»:,av 2D ; 1 r = g and » = b. To start with, it is

fig. y5. necessary to represent the functions ex-
pressing the distribution of the normal
and tangential forces along the boundaries in terms of Fouriler series
(25.13). We shall restrict ourselves to these general remarks, all the
more since apparently none of the problems of this kind for a curvilin-
ear-anisotropic ring, except for the above-mentioned one, has been fin-

ished.

§27. THE STRESS DISTRIBUTICN IN A COMPOSITE CURVILINEAR-ANISOTROPIC
RING

Let us consider the following problem. Let be given a round plate
with a round opening at the center, composed of an arbitrary number of
layers having the shape of concentric rings of the same thickness h,
and the property of cylindrical anisotropy. We assume that each layer
is orthotropic where the poles of anisotropy of all layers are at the
center, and the layers are connected with each other in a rigid manner,
i.e., they are soldered or glued together at the contact surfaces.

Along the boundary of the opening and the outside boundary the normal

- 116 -




i i o o dvk pacs s st o R R S

forces are uniformly distributed. The stresses in each layer must be

determine 1.

An analog of this problem is the problem of the stress distribu-
tion in a multilayer curvilinear-anisotropic tube which is acted upon

by internal and external pressure.

We shall choose the plate center (the pole of anisotropy) to be
the origin of coordinates ard place the polar axis x along an arbi-
trary radius (Fig. U46). We introduce the designations: n is the number
of layers; a, b are the inside and outside radii of the whole composite
ring; p, q are the internal and external pressures on the unit area;
a, ;s a, are the inside and outside radil of the layer No. m;
alm), ofml, <lw, gl glw)  are the stress components and displacement projec-

tions and Eym LWL #M—Jare the elastic constants (for the principal di-

rections r, 6) from the equations of the generalized Hooke's law of the

type (24.1):
()
¢, =t g :l/i’ (27.1)
am i m E'(r,“)

(the -ubscript m indicates the number of the layer; m = 1, 2,
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" Herc we have used ‘the designations:

a, = a, a, = b).

The stress components satisfy the boundary conditions:
for r=a oM=2-p, <W=0;
; i } (27.2)

for r=b oM=—g, <=0

On the contact surfaces of adjacent layers we have the conditions:

(27.3)

for , r = A o('m—l) — o:‘m)' .t('gn—l) — 1(5!)’
“gn—l) = u('m)’ u‘m—l) =z (",

It is obvious that the stresses and displacements 1n each layer
will only depend on the distance r where uém) = 0. Designating by 9y
and q, the normal forces acting on the inslide and outside surfaces of
the mth layer we obtain with the help of formulas (26.1)-(26.3) of the

preceding section:
—:—[(—)—(—)]+ |
AT
0‘“)=ﬁ£¥1[('r‘)km a"’ ] (27.4)

t—c,™ Gin
’ nkm (__) 52‘,,, _I_)k ntt
. czkm am r

w=0 J
+1

L mc:,"’ r \*n (ny 8 L
e [<k~»—~s~~> <a> Hht i (2) ]“

"l

(m=1,2 ..., q=p q,=9).
These expressions satisfy the boundary conditions (27.2) and the

first, the second, and the fourth condition of (27.3). Requiring that
the radial displacements of adjoining points of neighboring 1 -ers be
equal we obtain the equations for the determination of the unknown
forces q,

Tine1n 1 1%m st -+ qmampm + 9. 1T = 0

m=1,2,..., n—1). (27.6)

~
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E."‘ l_c'znk"l .
2%
1 14-¢,." 1
pm (,(\J,—'k .m )— X 2
E”" ' M cttm gD (27.7)
2%
- 1 w1
¢ [+ - g T ¥
c l—e¢, M+l
m+1

Eq. (27.6) is in its idea analogous to the three-moment equation
in the theory of solid beams, and it may be called "three-force equa-
tion."

Assigning to m successively the values of the integers from 1 tc

n — 1 and paying attention to the fact that g and q, are given and

equal to the given pressures p and q, we shall gradually determine all

forces qps and, at the same time, also the stresses in each layer.
The normal stresses in the radial sections near the inside and

outside surfaces of the layer No. m wlll be found from the formulas

(d"")) - Iq"“l (l '{' c,z:"‘) -_ 2(],,.0:."'-1 ( 2 7 . 8 )
alm-.-l - 1— c:m m;
2 Kot %,
(as:n\)am — qm-lcm — czi::(l + Cin ) km- ( 27 . 9 )

We shall mention the main results for a ring glued together frc..
two curvilinear-anisotropic rings and loaded by an external pressure
only (Fig. 47).

In this case n = 2, q, = p, q, = 0 and we obtain from Eq. (27.6)
only

gy = 2pchtik A, (27.10)
where
1 : )

L) e EM [ 14egn '
2% AL IR ) I Wi g — 2
(t =% [“ im0 T it

a aQ Ey) -E?-)
c‘ =:—-, Cy = ot | . I.'| = -’ kz = ——2-)'
o BT Y C;

b (27.11)
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From fcrmulas (27.8) and (27.9) we obtain the following values of
the normal pressure Og near the inside surface r = a, the contact sur-

face r = ay and the outside surface » = b:

Fig. U7

(27.12)
: 14 e\ — qpcthe
(")a = P, l1 czk.1 —, | ’
(= et LAY (31.13) B
' - [
‘ o l+c,k'. ’ ;
(0‘2))01 ?: kalkzc’l‘l-’.ll 1— cgk. ’ ( 27 . lll ) I
2 . cfl'f'lcz."'l
(O‘ )b = 4pk|k2)\ l _c;kl— o
(27.15)

The maximum stress for the whole composite (double) ring will be
found from one of formulas (27.12)-(27.15), but from which cannot be
sald beforehand. Finally, the problem of the maximum stress can be
solved only by giving the numerical values of the ratios of the moduli

of elasticity and the radii.

and the radial sections will be distorted for this reason.

The formulas for the stresses in a composite multilayer tube (case
of plane deformation) are obtained from the formulas for the stresses
in a ring by replacing the constants aij in the latter, respectively,

by the quantities

If the layers from which the ring is com-
posed are not orthotropic the stresses will be
determined by the same formulas (27.4), (27.8),
(27.9) or (27.12)-(27.15), but in this case
the quantities ! 1 _ Y must be replaced

E, ' B ~ E
by the constants ay70 Qggs and a,4, TESpec-
tively, from the equations of the generalized

Hooke's law (23.1). In a nonorthotropic ring

the displacements ug are not equal to zero,




i
apa .
B ==0y— o~ (L j=1.2,6) |

§28. THE STRESS DISTRIBUTION IN A RING WITH VARIABLE MODULI OF ELAS- 4
TICITY '

Let us assume that with the curvilinear-anisotropic ring shown in ;

Fig. 44 which 1s deformed by uniformly discributed pressures p and gq l

LIS

the moduli of elasticity are not constant, but arbitrary functions of
the distance r. We consider the behavior of the soluticen of the problem
if an orthotropic ring experiencing small deformations.

If the radial planes are planes of elastic symmetry it 1s obvious
that the stress distribution will only depend on r in which case all .
points will be displaced along the radiil in the deformation. Conse- ; ;
quently, wu=0, u,=u,(r), 14=0, and from the third equation of the gener-
alized Hooke's law Thg = 0. For the three unknown functions 0, Og and ?
u, we obtain three equations (in which the primes denote the deriva-

tives with respect to the sole variable r): 9

% —9% __0- 28.1
=N =0; ( )
1
u=F o %a"
: 1 28.2
F=—g o tEw (28.2)

B, By v, % —are, respectively, Young's moduli and the Polsson coeffi-
clents for the principal directions of elasticity (of radial r and tan-
gential 6) of the function of the variable r. Eliminating the displace-

ment u  from Egs. (28.2) we obtain:

9% w4 (¥ Y (Lo =

£ Rt(Ee) —(5) =0 {88e3)
The stress function does not depend on 8: F = fo(r); consequently,
0=f7;'l a.'=fg. (28.”) '
Substituting these expressions into (28.3) we obtain the equation for
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The general integral of this equatiouvn with variable coefficients has
the form
Jh = Ag(r) -+ Bgair): (28.6)
where g, 9, are linearly independent special solutions to Eq. (28.5),
and A and B are arbitrary constants; hence
- ATt P2
<°r—-A.—,'+B T
U°=A(?;+ B(P;.

The constants A and B will be determined from the boundary conditions:

(28.7)

(28.8)

for r=a a,=-——p;}
for r=b 3,=—q.

To determine the special solutions ?q and @2 we must know how Er’ E6
and Vg depend on r. Particularly simple will the determination of these
speclal solutions be in the case where the Polsson coefficients are
constant, and Young's moduli vary along the radius according to a power

law:

Er = Enurm' E-'l = Ey,,r™,

(28.9)

Erm
v == const, v, =2 E;’—'n—,

where m 1s an arbltrary real number, positlve or negative, integer or

fraction. In this case, Eq. (2%.5) is integrated with elementary func-

tions, and we obtain:

T — (28.10)
where
m=g[V w-r1@ —my +n].
m—g [V w4y — ], (28.11)
b=V EL_y/ Em.

E, Erm

Designating by ¢ the ratio of the radii: 2 = a/b we obtain the
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fu: wing stress distribution:

e n.+:‘+n' ( ) p q:‘n;"' . .H(-g-)."'ﬂ '
3y = pc"'+:‘:"' (‘;’)"I B — ll': Hv'l chitlin, (%)”r"l ' (26.12)
=0,

For constant moduli (m = 0) we have ny = n,

formulas (26.1) derived above from (28.12).

= k, and we obtain t

With somewhat different denotations Eq. (28.5) was obtained in a
work by P.N. Zhitkov.* This author considered also the special cases
where Young's modull and the Poisson coefficients are linear functior
of the distance r and they are represented by exponential functions
(in both cases the ratio Eﬂ/Er is assumed constant). P.N. Zhitkov shows
that the modulil of elasticity depend on the distance r 1n this way for
pressed wood (page 2 of his work). In both cases Eq. (28.5) assumes
a rather complex form and its solutions are expressed in terms of hy-

pergeometrical series or degenerate hypergeometrical functions.

Manu-

script

e [Footnotes]

No.

70 See the work: Lekhnitskiy, S.G., Nekotoryye sluchail ploskoy
zadachl teorii uprugosti anizotropnogo tela [Several Cases o
the Plane Problem of the Theory of Elasticity of an Aniso-
tropic Body], Sbornik "Eksperimental'nyye metody opredeleniy:
napryazheniy i deformatsiy v uprugoy i plasticheskoy zonakh"
[Collection "Experimental Methods of Determining the Stresse
and Strains in the Elastic and Plastic Zones"], ONTI [United
Scientific and Technical Publishing Houses], 1935, pages 158
161. In this work a coordinate system with different direc-
tions of the axes 1s used 1n studying the bending of a con-
sole.

71 See, e.g., Timoshenko, S.P., Teoriya uprugosti [Theory of
Elasticity], ONTI, 1937, page 45.

72 E. Reilssner, A contribution to the theory of elasticity of

nonisotropic material (with application to problems of bend-
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92

95

ing and torsion), Philosophical Magazine, ser. 7, Wol. 30
No. 202, 1940.

3

See our work mentioned in the preceding section (pzzes 1ol-

164).

See, e.g., Timoshenko, S.P., Teoriya uprugcsti, ONTI, 1937,
page 50.

The solutions set forth in this section we obtained by Ye.V.
Orlova in the diploma work "Izgib anizotropnykh balock s sech-
eniyem v forme uzkogo nryamoygol'nika popoechnoy nagruzkoy,
raspredelennoy po lineynomu i parabolicheskomu zakonu" [The
Bending of Anisotropic Beams with a Cross Section Having the
Form of a Narrow Rectangle Under the Action of a Transverse
Load Distributed According to Linear and Parabolic Laws],
(Saratovskiy gos. un-t) [Saratov State University] 1948.

Kurdyumov, A.A., O reshenii v polinomakh ploskoy zadachl te-
orii uprugosti dlya pryamougol'noy anizotropnoy polosy [On
the Solution of the Plane Problem of the Theory of Elasticity
in Polynomials for a Rectangular Anisotropic Band], Priklad-
naya matematika i mekhanika [Applied Mathematics and Mechan-
ics], Vol. 9, No. 4, 1945,

Vorob'yev, L.N., Ob odnom resheni? ploskoy zadachi v polino-
makh dlya pryamougol'noy plastinki [On One Solution to the
Plane Problem in Polynomials for a Rectangular Orthotropic
Plate DAN USSR [Proceedings of the Academy of Sciences of
the Ukrainian Socialist Soviet Republic], 1954, No. 5.

Problems on the bending of an isotropic beam with the help of
Fourler series were solved by Ribiere, Filon, Bleich, etc.
(Literature on this problem is given in the textbook by S.P.
Timoshenko, Teoriya urpugosti, ONTI, 1937, pages 56-63.

Kufarev, P.P. and Sveklo, V.A., Opredeleniye napryazheniy v
anizotropnoy polose [The Determination of Stresses in an Ani-
sotropic Band], DAN SSSR [Proceedings of the Academy of Sci-
ences of the USSR], Vol. 32, No. 9, 1941.

See our work "On the Calculation of the Strength of Composite
Beams," Vestnik inzhenerov i tekhnikov [Herald for Engineers
and Technicians], 1935, No. 9.

We note that all formulas for a beam with moduli of elastic-

ity continuously varying with the height may also be obtained
in another way: by passing to the limit of the formulas for a
beam composed of bands with the same height, making the num-

ber of bands infinitely great.

See the work: Lekhnitskiy, S.G., Nekotoryye sluchai ploskoy
zadachi teorii uprugosti anizotropnogo tela [Several Cases of
the Plane Problem of the Theory of Elasticity of an Aniso-
tropic Body], Sbornik "Eksperimental'nyye metody opredeleniya
napryazheniy 1 deformatsiy v uprugoy 1 plasticheskoy zonakh"
[Collection "Experimental Methods of Determining the Stresses
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and Strains in the Elastic and Plastic Zones"], ONTI [United

Scientific and Technical Publishing Houses], 1935, pages 17U-
179. In this work the solution of the problem 1s carried out

with all details, but with somewhat different denotations.

See our work mentioned in the preceding section where this
problem 1s worked out in a detalled manner.

See our work mentioned in §20.

Abramov, V.M., Raspredeleniye napryazhenly v ploskom bezgran-
ichnom kline pri proizvol'noy nagruzke [The Stress Distribu-
tion in a Plane Infinite Wedge in the Case of an Arbitrary
Load], Trudy konferentsii po opticheskomu metodu izucheniya
napryazheniy NIIMM LGU i1 NIIMekh MGU [Transactions of the
Conference on the Optical Method of Studying Stresses of the
Scientific Research Institute for Mathematics and Mechanics
of the Leningrad State University and the Scientific Research

Institute for Mechanics of the Moscow State Universityl],
ONTI, 1937.

Kufarev, P.P., Opredeleniye napryazhenly v anizotropnom
kline [The Determination of Stresses in an Anisotropic
Wedge ], DAN SSSR, Vol. 32, No. 8, 1941.

The solution of this problem 1s carried out in the work:
Lekhnitskiy, S.G., Ploskaya zadacha teorii uprugosti dlya te
tela s tsilindricheskoy anizotropiye [The Plane Problem of
the Theory of Elasticity for a Body with Cylindrical Aniso-
tropoy], Uch. zap. Saratovskogo un~ta [Scientific Reports of

the Saratov University], vol. 1 (14), Series for Physics and
Mathematics, No. 2, 1938.

S.P. Timoshenko, Teoriya uprugosti, ONTI, 1937, page 72.

See our work mentioned in §23[in the formulas (7.8) of this
work on page 151 there 1s a misprint].

If the sectlion perpendicular to the line of action of the
force leaves the 1limits of the girder (for small angles be-
tween the end sections) the maximum normal stresses will be
obtained at the point of fixation.

In the textbook on the theory of elasticity by S.P. Timoshen-
ko which we have mentioned several times the solution for the
case of a radial force directed inward 1s given (w = m, pages

84-86).

Kosmodamianskiy, A.S., Izgib ploskogo krivolineynogo anizo-
tropncgo brusa siloy prilozhennoy na kontse [The Bending of a
Plane Curvilinear Anisotroplc Girder by a Force Applied to
the End], Prikladnaya matematika i1 mekhanika, Vol. 16, No. 2,
1952.

See the works: 1) de Saint-Venant, B., Memolre sur les divers
genres d'homogeneite des corps solides [Report on the Various
Kinds of Homogeneity of Solid Bodies], Journal de Math. pures
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et appl. (Liouville) [Journal of Pure and Applied Mathemat
ics (Liouville)], Vol. 10, 1865; 2) Voigt, W., Ueber die

Elastizitaetsverhaeltnisse cylindrisch aufgebauter Koerper
[On the Elastic Properties of Cylindrical Bodies], Nachric!
ten v.d. Koenigl. Gesellschaft der Wissenschaften und d.

Georg-Augustin [Bulletin of the Royal Scientific Socilety ai
the Georg-Augustin University at Goettingen], 1886, No. 16

; A.N. Mitinskly determined the stresses in a wooden tube by
3 regarding it as a body with cylindrical anisotropy (Mitin-
;,1 skiy, A.N., Raschet napryazhenly v derevyannoy sverlenoy
trube [The Calculation of Stresses in a Bored Wooden Tube],
Vestnik inzhenerov i tekhnikov, 1936, No. 5.

114 See our work mentioned in §23.
115 Timoshenko, S.P., Teoriya uprugosti, ONTI, 1937, page 69.
123 Zhitkov, P.N., Ploskaya zadacha teorii uprugostl neodnorodnc-

go ortotropnogo tela v polyarnykh koordinatakh [The Plane
Problem of the Theory of Elasticity of an Inhomogeneous Cr-
thotropic Body in Polar Coordinates], Trudy Voronezhskogo
gos. un-ta [Transactions of the Voronezh State University],
Vol. 27, Physical-Mathematical Collection, 1954.
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Chapter 4

THE STRESS DISTRIBUTION IN AN INFINITE ELASTIC MEDIUM
§29. ELASTIC SEMIPLANE LOADED ALONG THE BOUNDARY

In this chapter we shall conslider the stress distribution i
a plane elastic medium with straight boundary loaded along the
boundary ("elastic semiplane") as well as in an infinite medium
whose section is limited by a parabola and a hyperbola. Besides,
we shall conslder the problem of the elastic equilibrium of an un-
limited plane medium under the action of concentrated force and
moment. For the sake of definiteness, we shall deal with a gener-
alized plane stressed state; all results obtained are also trans-
ferred to the case of plane deformation.

Let us consider an elasvic homogeneous anisotropic plate
with a straight edge along which forces acting in the mid plane
are distributed. If the dimensions of the plate in the direction
of the stralght edge and in other directions are great compared
to the length of the loaded part of the edge then it 1s possible
to get an idea of the stress distribution by simplifying the prob-
lem, 1.e., considering the plate to be an infinite plane elastic

medium with a straight boundary, in other words, an elastic semi-
plane.

There are several methods of solving the problem of stress
distribution in an elastic semiplane. The first method which is
based on the use of Fourier integrals 1s particularly convenient
in the case of an orthotroplc semiplane. We shail set forth brief-
ly its principle and the way of its application.*

We shall choose the following restrictions: 1) the medium is
orthotropic, in which case the directions parallel and perpendic-
ular to the straight boundary are the principal directions; 2)
the load i1s applied to the end part of the boundary, distributed
symmetrically with respect to the center of the loaded part and
results in a finite resultant.¥*¥

We shall choose the center of the loaded part of the bound-
ary to be the origin of coordinates, place the y axis along the
boundary and the x axis into the semiplane (Fig. U48). We shall
designate the .1ormal and tangential components of the load re-
ferred to unit length by N(y) and T(y); N will be an even func-
tion of y, and T an odd function. The stress function satisfies
the equation
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(volume forces are not considered).

(29.1)

We shall represent the functions ¥ and T in terms of Fourier

integrals; we obtain:¥

N () =.—i— J‘ b(z)cosay da, T(y) .= % J‘ x (a) sinay da,
. ¢ . )

where

pi0)= [ Nedcosandn, ()= [ T(msin andn,
[ . ' (-]

(29.2)

(29.3)

With increasing distance from the boundary the stresses must
tend to zero, and at the boundary itself the following conditions

must be satisfied:

S 1
for ¢ = 0 GB=—%NO) <Zy=—75TO0)

(as always, h 1s the plate thickness).

The solution will be obtained with the help of a
tion of the form

-+

F=[®( x)cosay da.

The form of the function ¢(a, x) depends on the roots
tion

Denoting these roots by ~“r T, and comparing (29.6)
(7.5) which is satisfied by the complex paramete.s ui
note that
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'"i-_-__"_'h" P iy (29.7)
and, therefore, u; and u; cannot be purely imaginary numbers.
The following three cases are possible:
Case I. The roots of Eq. (29.6) are real and unequal:

+u,, *u, (g, >0, '.u,‘> 0).

2 2. The roots are real and in pairs equal to one another:

*u (> 0).'
Case 3. The roots are complex
uiful‘, —utol (a..>_ 0, -u.> 0).
In Case 1
® (e, x)=4e""‘“'+ Be~we (29.8)

(A, B are arbitrary constants; terms becoming infinitely large

with increasing x are discarded in this expression and in the two
following ones).

In Case 2

G ;);(4+B;)e_""f‘;,- (29.9)

In Case 3

N

Q(a; x)=(Acosva):c-j.-Bsinva...:x)e"‘“:“’.. (29.10)

The coefficients A and B depend on the parameter a. Fulfil-
ling the boundary conditions (29.4) we obtain for Case 1:

0.; ?W-'-T.) _[ [ (@) (&, e-vez iy e“‘-‘“’)—

-

% o . ._x(a)(e-uu—e-"-u)]cosayda,

u.(u,—u;) .["P(“)“”’('“”e_"u+“‘ e (29.11)

+ X (a) (u’e‘“-‘-”—— uje )] cos ay da,

_m J IY(a)IJ uz(e—uw—e-"lw)__ %

——~x(a)(u e-ust g e-vin)|sinay da.

In order to be able to calculate stresses for a given load dis-
tribution with the help of these formulas we rust calculate the
integrals Y(a) and x(o) and, on substitution of the values found
into (29.11), carry out the integration. If the distribution law
of the load 1s simple the calculation of the integrals does not
encounter on particular difficulties.
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The formulas for the two other cases of roots may be obtained
from (29.11) by passing over to the limit, putting u,—u, a;—u

or (in Case 3) replacing u; and u, by the quantities u + v< and
u — v?:-

The solution for the case of an antisymmetric load where
N(y) 1s an odd and T(y) an even function of y 1s found in a com-
pletely analogous manner with the help of the stress function

F_-—_f\l'(al','x)slnayda. (29.12)
A L

The function ¥ has exactly the same structure as the function
$¢; according to which case of roots is under consideration it will
be determined by Formuia (29.8), (29.9) or (29.10).

Another method of solving the problem for the semiplane is
based on the use of several properties of Cauchy integrals and is
a generalization of the well-known method of Academician N.I.
Muskhelishvili to the case of an anisotropic body. By this method
we vere the first to obtain the solution of the problem of stress
distribution in an elastic anisotropic semispace in which the
state of the so-called generalized plane deformation 1is realized
(where the planes of elastic symmetry parallel to zy are absent).
The solution of the plane prcblem is obtained automatically from
the solution for the generalized plane deformation if the strain
coefficlents aiy, G G2 Gz Gy Gy G4 ae. are put equal to zero in the
latter. This solution will be presented without derivation.#®

Fig. 49

Assuming that the elastic semiplane 1s not orthotropic in
the general case we willl refer it to a coordinate system in which
the x axis 1is directed along the boundary, and the y axis outward,
as shown in Fig. 49. We shall designate by N(x) and T(z) the nor-
mal and tangential components of the load (per unit length). We
shall assume that the resulting vector of the forces distributed
along an arbitrary section of the boundary is finite and tends to
a certain limit if the ends of the section move to infinity; as
to the rest, the force distribution may be completely arbitrary.

The functions ¢3(z,) and ¢3(z,) in terms of which the

stresses are expressed [see (8.2)] will be determined from the
formulas:
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oo 11 BN () + T ()
=~ | SR04 |
G.N. Savin proposed another method of solving the problem 1
considered based on the Schwartz formula which is known from the ]

theory of functions of a complex variable; it expressed an anal-
ytic function in terms of its real part given on the contour.*

All methods indicuted may be used to determine the stresses
in a semiplane and in those cases where the displacements (second
fundamental problem) are given at the boundary rather than the
forces; in the general case, the procedure of solution remains the
same as in the case of given forces.

Somewhat more complex is the situation in those cases where
partly forces and partly displacements are given at the boundary
(problems of mixed type). The problems of the action of one or

several rigid stamps on an elastic semiplane, e.g., belong to
them.

The solutions of a number of problems of this type were ob-
tained by G.N. Savin¥¥ and L.A. Galin.¥*#

The problem of the contact of an elastic semiplane and an
elastic cylinder (as a special case of the problem of the contact
of two elastic anisotropic bodies) without and with account taken
of the frictional forces was considered by G.N. Savin and D.V.
Grilitskiy.¥**¥¥ M, Sokolovskiy gave the solution of the problem
of the contact of an infinitely long elastic band and an elastic
anisotropic semiplane (an infinite beam on an elastic base, bent
by a normal force). It is assumed that there are no frictional
forces on the contact surface and the band cannot be detached

from the semiplane. The solution is obtained with the help of
Fourier integrals.*¥¥¥¥

§30. THE ACTION OF A CONCENTRATED FORCE AND MOMENT APPLIED TO THE
BOUNDARY

If we want to obtain the stress distribution due to a normal
concentrated force P applied to the point 0 on a straight bound-
ary of an infinite elastic medium (Fig. 50) we shall first con-
sider a normal load distributed uniformly along a small section
of the boundary having the length 2 € around the point 0 with a
resultant equal to P.

We shall restrict ourselves to the case of an orthotropic
semiplane in which the principal directions of elasticity are
parallel and perpendicular to the boundary. Using the first meth-
od set forth in 5§29 we substitute the following values of the
load components into Formulas (29.11):
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All integrals entering (29.11) are easily computed; the results
will depend on €. Letting then € pass to zero we obtain the fol-
lowing formulas for the stresses due to a concentrated force:*

o = — P (a4 uy) A &3 -
LT xhk (P aix?) (P 4 uied
o —_ Ptuy .y
v xhE (P aiah) () + uix )
Toy =— Plugtuy) - x3y P (30.1)
xhk T i) (o )
/k=l/'

Thls solution is derived for Case 1 where the roots of Eq.
(29.6) are real and unequal. The solution for Case 2 is obtainec
from (30.1) by putting u,=u,=u, and the solution for Case 3 by
putting uy=a4ul, u=u—ui.

Passing over to polar coordinates we obtain:

0. == — Pluy+uy) cosb
T TsYVEE IO
o _*,O. C IS ; } (30.2)
85 ."._ N
Here
. .. - [ IR ST -l—'-',
. 0.
L(.,) °°’,‘°+(la—fs—)s‘“"’°°s'°+s'"_‘.,o, 0

As we have already remarked the function L(6) has a certain
physical meaning — it 1s a quantity which is the reciprocal value

of Young's modulus for stretching (compression) in radial direc-
tion: L = l/Er.

Formulas (30.2) show that the stress distribution is "radial"
or "ray-like"; this was, of course, to be expected since the semi-
plane may be regarded as a wedge with a top angle of mw. The stress
or which is the principal one, decreases inversely proportionally

to the distance r and for given r = const varies with varying an-
gle 6 according to a rather complex law.

The points at which the stress o, has the same value 0ys PO-
sitive and negative, lie on fourth-order curves; the equation of
the family of these curves has the form:

o1 N P
BBk S e 00

These curves are all closed, symmetric with respect to the
line of action of the force (the x axls) and touch the boundary
of the semiplane x = 0 at the point 0 where the force 1is applied.
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The investigation of Eq. (30.2) and Eq. (30.4) leads to the
following results:

The stress op attains its maximum absolute value oi: the line
of action of the force 6 = 0 1if

L (a)

or if at the same time

G ETTE (b)
and

_8____.3._>0 (b')

If, besides Conditions (a) or (b) and (b') the medium con-
stants satisfy the two other conditions:

- o —a. E1>‘E_’-' X _.... (C)
( 3+/)V‘)>0.! (C')

then, besides the direction of the force action, there are two
other directions for which |0r| attains maximum values; the an-

gles determining these "dangerous" directions in the medium willl
be found from the equation

er==y/ BV - 4+2*=+‘/.-—9.ﬂ=. _g_,(.g._.sgﬂ). (30.5)

If both Conditions (c¢) and (c'), or even one of them is not
fulfilled the maximum of |0P| on the line of action of the force

will be the only one.
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The two angles 6 for which |°r| attains 1ts maximum value
will be found from the equation

=y BV I B AT, (0.6

If the eiastic constants of the medium fulfill the conditlon

?—'E_,<-‘-2-'E (d)

-E_E-=-§.E' (e)
55 <0 (et

then the stress or on the line of action of the force attains a

minimum rather than a maximum. In this case there are two angles
corresponding to the maximum of ‘Url; they are found from Eq.

(30.5).

In accordance with these results three types of lines of
equal stresses may be noted for different elastic orthotropic
media. The curves of the first are obtained in a medium in which
the elastic constants satisfy Conditions (a) or (b) and (b'), but
do not satisfy Conditions (c) and (c'); they are shown in Fig.
51. The curves of the second type occur if Conditions (a) [or (b)
and (b')], (c¢) and (c') are simultaneously satis ied (Fig. 52).
The side branches correspond to the dangerous directions for
which |o | attains additional maxima. The curves of the third

type shown in Fig. 53 are obtained in a medium with elastic con-
stants satisfying Condition (d) or Conditions (e) and (e').

Fig. 51

The lines of equal stresses make 1t possible to get a rather
clear notion on the way in which the stresses in a semiplane due
to a concentrated force are distributed. In special cases of ani-
sotropy the curves may degenerate to ellipses and even circles.

- 134 -

- = T o et Al
" Licachan ik aicatiisbibe s Sl R

5 - A




EPTITITN e idp xSl G Bl i dog e s ot Tl R e e R
ARl 5ot pant TR T v Wi e o< dos iaiec soniati it uicatin T T T TR LTS T (e e O st Gt L e v

In the case of an orthotropic medium E,=E;=E. L=1/E, yy=a,=1
and we obtain the well-known solution of Flaman:¥

2P cos® 0
ET T 9T (30.7)

the lines of equal stresses 9, become circles (Fig. 54).

If the force acting on an orthotropic semiplane is directed
arbitrarily in the xzy plane then the general character of the
stressed state will remain as before, but the stress o_ will be
determined from the formula r

. ' E, .
: —=slnwsinl
_ Pluytug) cos o cos § - E’snmsn

T O VEE FL(%) .

(w is the angle formed by the 1line of action of the force with a
normal toward the boundary, Fig. 55). In this case a neutral line
(straight line) appears inside the semiplane, all stress compo-
nents vanish on it; the angle of inclination it makes with the x
axis will be determined from the equation

tg0=—|/ 5ctg(u. (30-9)
E -

In an anisotropic semiplane the neutral line is, in general, not
perpendicular to the line of action o. the force and forms an
acute angle with it if £, > E, and an oi’use one of E; < E2. On
one side of the neutral line the medium is compressed, and on the

other one it is stretched. The line of equal stresses are repre-
sented 1In the form of fourth-order curves similar to the curves

(30.4).

(30.8)

It is easy to obtain the solution also for tlL. ' case of a non-
orthotropic semiplane deformed by a force applied to the boundary.
For this purpose the second method mentioned in §29 may be used,
or we can make use of the solution for a nonorthotropic wedge (see
§20), putting the vertex angle equal to m. We shall not present
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this method. We only note that the general character of the stress
distribution will be the same as in the case of an orthotropic
semiplane, merely the formulas for Or and the equations of %he

curves of equal stresses are somewhat more complex.

A concentrated moment M applied to the point 0 at the bound-
ary of the semiplane (Fig. 56) will be considered to be the lim-
iting case of two equal forces of opposite directions where the
distance between the points of their application tends to zero,

but the moment of the couple remains constant and equal to that
given.

Fig. 56

Using the solution for the force we obtain the following
final formulas for the stresses in an orthotropic semiplane:

L Mte) s [' +(.l—'—+ﬂ—l—j1')°‘;‘;°].;'
]

o SVEE, PLOPLE T\GT g

; _MEtu) l+cos20". B ;' o
MAVEE, ALEO) |

(30.10)

The same solution is obtained from the solution for a wedge
set forth in §21, for ¢ = /2. In the case of an orthotropic semi-
plane

o = __ 2M sin20

=T AT

o =0, , (30.11)
_ M 1-+4cos20

LT R

Among the other cases of loads only the simplest have been
studied, as yet, where the load is applied to a finite section of
the border and uniformly distributed along 1it, according to trap-
ezold and triangle laws.*

§31. THE ACTION OF A FORCE AND MOMENT APPLIED AT A POINT OF AN
ELASTIC PLANE

The approach to the problem of stress distribution in an ani-
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sotropic plane due to a concentrated force applied to an inside
point which is far enough from the edge wmay be performed in the
following manner. We shall regard the plate as an infinite plane
medium — an elastic plane to one of whose points a concentrated
force P is applied. This concentrated force may, in its turn, be
regarded as the limiting case of a load distributed along the
edge of an infinitely small opening and resulting in a resultant
equal to P.*¥

We shall choose the point where the force is applied to be
origin of coordinates, place the z and y axes arbitrarily (Fig.
57) and assume the elastic constants referring to these axes to
be given; generally, we shall assume the plate to be nonortho-
tropic.

We shall make use of the complex representation of stresses
and displacements in terms of two functions ¢,(z;) and ¢,(z2) (see
§8). Since around the point 0 an opening, even one with infinitely
small dimensions, 1s assumed the functions ¢, and ¢, must be mul-
tiple-valued and their increments if we pass along an arbitrary
closed contour y encircling the opening must satisfy Egs. (8.10)
where we must put Pp=Pcosa, P, =:Psinw (Fig. 57). If the distance
from the point where the force is applied 1s increased the stress
components must tend to zero. The functions of the form

®,(z;)=Alnz,, &,(z;)=Blngz, (31.1)

allow all these conditions to be fulfilled, where 4, B are con-
stant, generally complex numbers which are determined from Egs.

(8.10). Designating by 4 and B we obtain the followlig equations
on the basis of (8.10):
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(the complex parameters u, and p; are the roots of Eq. (7.4) and
supposed to be unequal).

The stress components are determined by the formulas:

2 1oy \
o, =2R ("‘A '**_.B-).
1 R

a=2Re( +_B_), ' (31.3)

) ]
= _ 9Re (P14 .
‘t" Re( 2 —}?2: ]

In the case of a nonorthotropic medium these expressions
will be very cumbersome, after splitting of the real parts. We
shall present here only the formulas for the stress components in
polar coordinates in which these quantities are calculated in the
case of an orthotropic plate when the & and y directions coincide

with the principal ones, and the force acts in the direction of
the z axis (w = 0):

. 1 i
o = F: C“O[Ip (1— wz)( -l;P’)sn +Px
M(p‘—p&,) J cos? 8 — pf 5in* 0
IR S (l P’)(1+P§)s'nz°+P= .
.89 . cl g cos?8 —plsin? 0
o.=—2,—‘,’,;(1 ,k)c_oﬂ S AT
o R
= i (1--ub) =

[k='—|&,p-,— ‘/~. .ﬂ.‘—-‘—l(h‘}'}*z)]

In the given case the complex parameters p, and g2 are roots of
the equation

%:_‘_(% ) 2+___0 (31.5)

Although the imaginary unit {=V—1, enters Expression (31.4)
all three expresslons are real: for an orthotropic plate k and n
are always real numbers (in all three possible cases 1, 2, 3,
mentioned in §7).

Attention must be pald to the very simple law of distribution
of the stresses Og and L and the very complex kind of dependence
of the stresc o, on the angle 6. As in the case of a semiplane
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loaded by a force the stresses vary inversely proportionally to

the distance »r, but in our case the stress distribution will not
be "radial" or "ray-like."

Putting uy = p, = ¢ we obtain the stress distribution in an
isotropic medium (with a Polsson coefficient v): ¥

0 =— jor B4 <2
_ P i cos §-
9 = m( _V)r_- (31.6)

Fig. 58

If we know the stress distribution due to a single force
(31.3) we may also obtain the stress distribution due to a moment
M applied at the point 0 of an unlimited medium, but superposition
and subsequently passing to the limit (Fig. 58). In this case, as
in the case of the semiplane, the moment is regarded as the lim-~
iting case of two forces of opposite directions. In the case of an

orthotropic medium the final formulas for the stresses have the
form:

~

g e M .sln26[pl(l+pf)(—l—plpz+lpl—lp,)_; ]
dmh(u —p,) (cos?8— p2sin? 0y &
: o m(t '+P§)(—1—p,»,—~'p,+lp,)]
(COs2 8 — pj sin? 0)2 '

(31.7)

-.. : M i . ! le : .
=g w0+
+ (1 — ) (1 4 £+ n)cos 28).

L is here a quantity reciprocal to E_ [see Formula (30.3)];

the direction of the z axis from which thé angles 6 are counted
coincides with the principal one.

A very simple stress distribution is obtalned in an isotropic
medium:

=T A (31.8)
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On the basis of the formulas given in this and the preceding
sections it 1s easy to obtain by superposition the stress distrib-
ution in a semiplane under the action of force and moment whose

points of application are inside the semiplane rather than on the
boundary.

The solution of the problem for an orthotropic semiplane de-
formed by a force which 1is applied at some distance from the bound-
ary 1is given in the works by Conway and M. Sokolowskiy.®*

S.G. Mikhlin found the general solution of the problem of
stress distribution in an elastic anisotropic plane with slits
lying on one straight line, where the external forces are given
at the boundaries of the slits.** Another method of solving this
problem was proposed later on in a work by P.A. Zagubizhenko¥*¥¥

who also studied a speclal case: the compression of an anisotropic
plane with one straight slit (thin slot).

§32. THE STRESS DISTRIBUTION IN A PLANE MEDIUM WITH PARABOLIC AND
HYPERBOLIC BOUNDARIES
Let us consider the elastic equilibrium of an anisotropic
plate with

a concave boundary having the form of a parabola, under
the action of a load applied to this boundary. If the length of
the loaded section 1s small compared to the plat: dimensions the
latter may be regarded as an infinite plane elastic medium with
hyperbolic boundary. To determine the stresses 1t is the simplest
way to use a method analogous to the second method of solving the
problem of an elastic semiplane, about which was discussed in

§29.

Let us identify the origin of coordinates with the point of
the concave boundary where the curvature is maximum, and place
the x axis along the tangent, and the y axis outward (Fig. 59).

In this system of coordinates the equation of the boundary line
has the form:

y=axt (a>0) (32.1)

n = the projJections of the forces per unit length -

be given functions of x; with respect to these forces we shall
assume that thelr resultant for any finite or infinite section of

the boundary is finite or zero. Generally we shall assume the ma-
terial to be nonorthotropic.

Let Xn’ Y

We present here the final expressions for the functions

®1(z,), ®1(z;) determining the stresses [according to Formulas
(8.2)]:%%%x

. . . N 1
1 . 1 Xn+P1Yn T 4a%2d
4"(’*) W —ph VT et E=lule) Ve AR (32.2)
' =- oy 1 Xn+P|Yn IH4ate d
5"‘(”’ Wi—pD b Vitiapz ), —b V e ¢
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Here

C (Z)= v l+4ap,z,—l
Rl 2,0 ’

r(zl)=‘/l+4ap,z,—] (3?.3)
iy T m

are functions of the complex variables z, and z, which assume the
same value x at the medium boundary y = az?.

For a = 0 we obtain from it the already known solution for
the semiplane [Formulas (29.13)].

Formulas (32.2) make it possible to find the functions of
the complex variables (and from them also the stresses) for any
force distributicn at the boundary if only these forces satisfy
the above-mentioned conditions. No special cases of the elastic
equllibrium of a plate with parabolic edge have been studied, as
yet. Conversely, for an anisotropic plate whose edges are hyper-

bolic only the solution for one special case which we shall dis-
cuss 1n conclusion is known.

Fig. 59

Let be giver an anisotropic plate whose region is bounded by
two branches of a hyperbola and two equal straight segments (Fig.
60). Normal forces resulting in stretching axial forces P are dis-
tributed along the straight boundaries. The stresses are to be

determined, and, in particular, the stresses in the narrowest
section x = 0.

An approximate solution of this problem for an isotropic

plate was obtained by Neyber,* and for an orthotropic one by
Smith and Okubo.¥*#

The results of Smith and Okubo are easy to generalize to the

case where the plate is not orthotropic which we shall also sup-
pose, at the beginning.

We shall consider the plate to be infinite and the region to
be limited by two hyperbola branches. Placing the axes as is

shown in Fig. 60 we may write the equation of the edge in the
form

x3
22y (32.4)

1
|
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or 1n parametric representation

x=>bsht, y==+acht (32.5)

(the plus sign refers to the upper hyperbola branch, the minus
sign to the lower one). Since the edge 1is not loaded the follow-

ing conditions will be fulfilled on it:

oy dy dx =0,
z,dy—.c,dx=0.} (32.6)

The stresses in an arbitrary cross section z = 2z, must re-
sult in an axial force P from which three further conditions are

obtained:

f p Ve ’ 7]

a,dy=r. Jc_,ydy=0, ft"dy=0.

- ) -V .'. o= R . (3207)

where )
yo=%Vb’—}-x§.
All conditions can be satisfied by choosing the functions ¢,
and ¢, in the form:
@ <zo—Aln(zl+sz+b’—»’ %), } (32.8)
2(z,)—Bln(z,—i—Pzz ——p a) .

From (32.6) and (32.7) we obtain the following equations for
che constants 4, B and the conjugate quantities:

A4+ B4+ A4 B=0, )
AP;+B“2+AF1+BI‘2—0 .
Aln ‘+*‘"+Bln Idpe o

1 —pye 1—pge
1 c 1
Lo A i:°+3'"1+::_° b (32.9)
Amln_ﬁ%ntfmzm:sz— |
+Z}le“‘;—i_%£'+§;zl“:ik %

S ay - . :
(C=T). % ) J
Equations (32.9) simplify for an orthotropic plate with pure-
ly imaginary parameters p,=§fi, py,=28. Solving them we find:

= P = P
A=A=—E? B=B=E? (32.10)

where ' T ' o
(32.11)

é: Barctg (Be)—3 arcég (3c);
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P R »
7Y e(V +bz+ﬁzaz sz-{-bz-{-b’ 3)
P r o\,

2hg < Vﬁ-i—bz ﬂzz Vz§+bz+62a2> (32.12)

LT
<VZ 26 4 pad VZ + 6+ bzz)'

In the narrowest section x = 0 the tangential stress vanishes,
and the normal stress 1is determlned by the formula:

_ P i — e ]
S AN e (32.13)

The maximum value of the stress 1s obtained at the ends of
thie narrow sccticn, i.e., at the points x=0, y==g4, 1t is equal

to:
P
m“=mK'
(32.14)
where
K=(_§’_%°ﬂ_‘_ (32.15)

In Formula (32.14) the factor P/2ah is the stress due to the
stretching force in a prismatic rod in which the cross section is
the same as the cross section of our plate in its narrowest part;
according to G. Neuber, this stress may be called "nominal"; the
factor K is the concentration factor; it indicates how many times
the maximum stress in the plate with the hyperbolic edge is great-
er than the nominal one. We note that at the points « = 0, y = +a
the radius of curvature i3 p = b/e.

In the case of an isotropic plate

2t
K"'",c—i—(l-{-c’)arctgc'- (32.16)
The factor K grows with increasing curvature at the end points of
the narrow section (or, which is the same, when the radius of
curvature decreases). The stress obtained at the center of the
section 2 = 0 is lower than the nominal one.

A~
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/ presented. Two main cases
j’ must here be distinguished.

1) The plate is cut out such that the c
£ ] allel to the axiail direct

:} tion for which Youn

asing fibers are par-
lon (the plate is stretched in a direc-

g's modulus is maximum: E, = Em ). In this

case ax

| Pi=4111, p,=0,3431, B=4,11, 30,343,

3 2) The directions of the casing fibers are perpendicular to
~3 the axial direction (the plate is stretched in a direction for
| which Young's modulus is minimum: Ey = E ). For this case

P1=0.243L =291, B=0,243, 32,091,

e il

e e A

TABLE 1

The Values of the Concentration 7
Coefficient X for Different Vval-
ues of the Ratio e = a/b.

pe b S s i

a 1 Prneps Hsorponnas
€= 'y nASCTHRXA
: z E, = Enax E) = Entn 2 i
i 3
1 10 28,36 120,00 1274 |
L 5 1422 10,07 6,39
i 2 5,83 4,22 2,65
L 1 3,13 2,36 1,56
g 05 1.85 1,50 116 §
] i 0,1 1,03 1,02 | 1,01
o H
k' ’i
| ?
1 1) Plywood; 2) isotropic plate. }

[
This table shows that the maximum stress in a plywood plate
obtained is higher than the maximum stress in the same isotropic

plate. If, however, the two cases of the plywood plate are com- :
pared, then, as is shown by Table 1, the concentration coeffici-
ent obtained is higher in the case where the plate is stretched
in a direction for which Young's modulus is maximum.

- The formulas and table

S shown may be used to calculate ap-
proximately the stresses in

stretched rectangular plates weakened

e e e NEL S s g

E by two identical side grooves.
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[Footnotes]

This method is set forth in greater detail in our above-
mentioned work "Nekotoryye sluchai ploskoy zadachi teo-
rii uprugosti anizotropnogo tela" {Several Cases of the
Plane Theory of the Theo.y of Elasticity of an Aniso-
tropic Body], sbornik "Eksperimental'nyye metody opre-
deleniya napryazheniy i deformatsiy v uprugoy i plasti-
cheskoy zonakh" [Collection "Experimental Methods of
Determining Stresses and Strains in the Elastic and
Plastic Zones"]J, ONTI, 1935, pages 164-173.

The problem may also be solved without these restric-
tions, but the solution obtained will be considerably
more complex.

Smirnov, V.I., Kurs vysshey matematiki [Course on High-
er Mathematics], vol. Gostekhizdat [State Publishing
House on Technical and Theoretical Literature], Moscow-
Leningrad, 1951, pages 464-L(8.

Lekhnitskiy, S.G., Nekotoryye sluchai uprugogo ravnove-
siya odnorodnogo tsilindra s proizvol'noy anizotropiyey
[Some Cases of Elastic Equilibrium of a Homogeneous Cyl-
inder with Arbitrary Anisotropy], Prikladnaya matematika
i mekhanika [Applied Mathematics and Mechanics], Vol. 3,
No. 3, 1939, pages 359-361. See also the book: Lekhnits-
kiy, S.G., Teoriya uprugosti anizotropnogo tela [Theory
of Elasticity of an Anisotropic Body], Gostekhizdat,
Moscow-Leningrad, 1950, pages 115-117.

Savin, G.N., Nekotoryye zadachi teorii uprugosti anizo-
tropnoy sredy [Some Problems of the Theory of Plasticity
of an Anisotropic Medium], DAN SSSR [Proceedings of the

Academy of Sciences of the USSR], new series, Vol. 23,
1939.

See the works by G.N. Savin: 1) Davleniye absolyutno
zhestkogo shtampa na upruguyu anizotropnuyu srednu
(ploskaya zadacha) [The Pressure of an Absolutely Rigid
Stamp on an Elastic Anisotropic Medium (Plane Problem),
DAN USSR [Proceedings of the Academy of Sciences of the
UkrSSSR), 1939, No. 2; 2) Davlenive zhestkogo lentoch-
nogo fundamenta na “mgoye anizotropnoye osnovaniye
[The Pressure of a Band Foundation on an Elastic
Anisotropic Base], Ve. 1k inzhenerov i tekhnikov [Her-
ald of Engineers and Technicians], 1940, No. 5; 3) O
dopolnitel'nom davlenii peredayushchemsya po podoshve
absolyutno zhestkogo shtampa na uprugoye osnovaniye vyz-
vannom blizlezhashchey nagruzkoy [On the Additional
Pressure Transferred at the Bottom of an Absolutely Rig-
id Stamp on the Elastic Base, Due to an Adjacent Load]
\ploskaya zadacha) [Plane Problem], DAN USSF, 1940, No.
7; 4) Davleniye sistemy zhestkikh shtampov ny upruguru
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anizotropnuyu poluploskost' [The Pressure of a System
of Rigid Stamps on an Elastic Anisotropic Semiplane],
Soobshcheniya Gruzinskogo filiala AN SSSR [Communica-
tions of the Georgian Branch of the Academy of Sciences
of the USSR], 1940, No. 10; 5) Smeshannaya zadacha dlya
anizotropnoy poluploskosti [The Mixed Problem for an
Anisotropic Semiplane], Uch. zap. L'vovskogo gos. un-ta
im. I. Franko [Scientific Reports of the I. Franko
L'vov State University], Vol. 5, Physical-Mathematical
Series, No. 2, 1947.

Galin, L.A., Kontaktnyye zadachl teorii uprugosti [Con-
tact Problems of the Theory of Elasticity], Gostekhizdat,
Moscow, 1953, see also the works of L.A. Galin mentioned
in this book (pages 258-259).

Savin, G.N. and Grilitskiy, D.V., Davleniye dvukh anizo-
tropnykh tel (ploskayva zadacha) [The Pressure of Two
Anisotropic Bodies (Plane Problem)], DAN USSR, 1952, No.
2; Grilitskiy, D.V., Szhatiye dvukh uprugokh anizotrop-
nykh tel pri uchete sil treniya (ploskaya tadacha) [The
Compression of Two Anlsotroplc Bodies Taking Account of
the Frictional Forces (Plane Problem)], DAN USSR, 1953,
No. 3.

Sokolowski, M., Pewne zagadnlenia plaskie teorii spre-
zystoscl clala ortotropowego [Some Problems of the
Plane Theory of Elasticity of an Orthotropic Body],
Arch. mech. stosowanej [Archive of Applied Mechanics],
Vol. 6, No. 1, 1954.

See our work mentioned in the first footnote of the
preceding sectlon. This problem for media with an Ani-
sotropy of a Special Kind was considered independently
of us at different times by many foreign authors. The
earliest investigations are due to Wolf and Okubo (see
the works: 1) Wolf, K., Ausbreitung der Kraft in der
Halbebene und im Halbraum bei anisotropem Material
[Force Propagation in Semiplane and Semispace in the
Case of Anisotropic Material], Zeitschrift f. Angew.
Math. u. Mech., [Journal for Applied Mathematics and
Mechanics], Vol. 15, No. 5, 1935; 2) Okubo, H., General
Expression of Stress Components in Two Dimensions in an
Aeolotzopic Substance, Sci. Rep. Tohoku Univ. 1, page
25, 1937).

See, e.g., Timoshenko, S.P., Teoriya uprugosti [Treory
of Elasticity], ONTI [United Scientific and Technical
Publishing Houses], 1937, page 97.

Savin, G.N., Napryazheniya v anizotropnom massive pri
zadannoy nagruzke na poverkhnosti (ploskaya zadacha)
[The Stresses in an Anisotropic Solid Body for Given
Load on the Surface (Plane Problem)], Vestnik inzhene-
rov 1 tekhnikov [Herald of Engineers and Technicians],
1940, No. 3.
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The solution of this problem is given in the work: Lekh-
nitskiy, 5.G., Ploskaya staticheskaya zadacha teorii
uprugosti anizotropnogo tela [The Plane Static Problem
of the Theory of Elasticity of an Anisotropic Body],
Prikladnaya matematika 1 mekhanika, New Series, Vol. 1,
No. 1, 1937.

Timoshenko, 5.P., Teoriya uprugosti, ONTI, 1937, page
126.

Conway, H.D., The Stress Distributions Induced by Con-
centrated Loads Acting in Isotropic and Orthotropic Half
Planes, Journ. Appl. Mech., Vol. 20, No. 1, 1953; Soko-
lowski, M., Pewne zapadnienia plaskie teoril sprezys-
tosctl ciala ortotropowego, Arch. mech. stosowanej, Vol,
6, No. 1, 1954,

Mikhlin, 5.G., Ob odnoy chastnoy zadache teorii upru-
gosti [On One Special Solution of the Theory of Elastic-
ity ], DAN SSSR, New Series, Vol. 27, No. 6, 1940.

Zagubizhenko, P.A., O napryazheniyakh anizotrcpnoy
ploskosti oslablennoy pryamolineynymi shchelyami [On
the Stresses of an Anisotropic Plane Weakened by
Straiprht Slits], DAN SSSR, 1954, No. 6.

Lekhnitskiy, S.G., Obobshchennaya ploskaya defomatsiya
v bezkonechnom uprugom anizotropnom poluprostranstve
ogranichennom poverkhnost'yu parabolicheskogo tsilindra
[The Generalized Plane Deformation in an Infinite Elas-
tic Anisctropic Semispace Limited by the Surface of a
Parabolic Cylinder], DAN SSSR, Vol. 25, No. 3, 1939. In
this work a detailed derivation of the solution of the
posed problem is given.

Neuber, G., Kontsentratsiya napryazheniy [Stress Con-
centration], OGIZ [State United Publishing House], Mos-
cow-Leningrad, 1947, Ch. 4,

Bassel Smith, C., Effect of Hyperbolic Notches on the
Stress Distribution in a Wood Plate, Quarterly of Ap-
plied Mathematics, Vol. 6, No. 4, 1949; Okubo, H., On
the Problem of a Notched Plate of an Aeolotropic Mate-
riﬁl, Philosophical Magazine, Vol. 40, Ser. 7, No. 308,
1949.
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Chapter 5

STRESS DISTRIBUTION IN ELLIPTIC PLATE AND CIRCULAR DISK

§33. DISTRIBUTION OF STRESSES IN AN ELLIPTIC PLATE LOADED ALONG
THE EDGE

In the present chapter we consider the problem of the stress
distribution in a uniform elliptic plate loaded by forces applied
to the edge, and that of such a plate which rotates at a constant
angular velocity about an axis passing through its center. But
here we consider the problem of a rotating round disk possessing
cylindrical anisotropy, in both the case of a massive disk and
that of a composite one.

-

Flg. 61

Let us consider an elliptlc plate of uniform anlsotropic ma-
terial, which 1s in equllibrium under the forces applied, when
these forces are distributed along the edge according to an arbi-
trary law. In the general case we shall consider the plate to be
nonorthotropic. We direct the axes z and y along the main axes of
the ellipse (Flg. 61) so that the equations of the generalized
Hooke's law, which link the mean values, with respect to the
thickness, of the stress and strain components, can be written in
the followilng form:

€y = 08120, + az9y - aygTey
Ty == 816% 1 826%y + 8ggay

8, = a,,0,+ ;.0 8157z
(33.1)

The constants 8w 812, -... 8 are assumed to be given. Let us denote
by X_, Y, the projectlions of the external forces referred to unlt
area, and by a and b the semlaxes of the ellipse.
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We assume absence of volume forces and the forces Xn, Yn to

be in equilibrium so that the principal and their principal mo-
ment are equal to Zzero.

For the ease of an isotropic plate this piroblem was solved
by N.I. Muskhelishvili.* A general solution for the anisotropic
plate by the method developed here was derived by the author, *¥
and by means of another method, by P.P. Kufarev.¥¥*#¥

The equation of the plate's conbtour is piven in parametric
form

x—_-acosﬂ, y=bsin0.‘ (33.2)

The given forces are assuined to be functions of the varlable
¥ (which varies from zero to 2m).

We express Lhe stress components and the projections of the
displacement in terms of functions of the variables ®,(z) and P:(z2).
such that the boundary conditions for these functions can be writ-
ten 1n the form of (8.7):

2 R; (¢, (Zl)+ D, (2,)) = —f Yods+c,
. ")'-'.' Lo s . . LU

| o . (33.3)
2Re [y, (2) + By (2] = [ Xods+ c.

We expand the given forces Xn’ Yn in Fourier series and sub-

stitute them in the integral expressions of the right-hand sides
of the conditions. In the general case of forces (being in equi-
librium along the contour) we obtain:

s T .
I "‘J' Ynds—+ ¢ =a;+ El(amd""{‘ XS~ ™), ‘
e e (33.4)
J Xads 4ty =yt T @rom+ Fmom.
0 : ©ag . .
— M-
where °=¢" %m Bn  ape given coefficients, which depend on the law
of load distribution, o, ) are conjugate quantities, q,p8, are ar-
0 m

bitrary constants. The coefficients &. B @ and 3, must satisfy
the equilibrium condition (principal moment vanishing):

;l—"x:ﬂx-{*—El (33.5)
7] a

The solution of the problem in the most general case of
load distribution is obtained by means of the functions ¢, and ¢
in the form of the following series




P,(2))= At Az, +m2_z!4mplm (2)), l
J (33.6)

P, (z,) = B;) + Bz, EQ By Py (23).

§ f le and P2m are here integral polynomials of power m with
respect to the variables z; and z,:¥%

‘ = — 7 a1
Fi‘ Pim(2)) = _— b) [( -+ Vzl a? be ) + 1
; | : + (zl - sz - a! - p.be)"'l ’ ( )
P, (22)=— - 25)"' [(zz+ V zg_az_Pgbz)M_*_ 33.7
| . 4= VE=T— "] |

On the plate's contour (33.2) the functions z. 2z, P, and P

i take the following forms: om
i |
— b wd 1
? =St ATE L, (33.8)
! —lpgb ! 1 .
L =" 2Hb °+‘a+2p°b 5
¥§ Pin==—o"— ™" Pyp=—o"—f0"", (33.9)
- where .
| | t,-'=“+’*‘"” t2=‘i’—*‘z’3 (33.10)

a—lpd’

| Substituting the boundary values of the functions ¢; and &,
in the Conditiorns (33.3) we obtain equations for the determination
‘ of the coeffilcients Am and Bm and the conjugate quantities Am and

Bm: gy
An—~+ By Apt? 4 B2 =—ay )
’ Ayt Bty +Ami"|t1 + Bmi"ztz =— pm'
‘ Al + Bt 4+ A, + B, =—u,, (33.11)
: Al + B t7 + Zml‘_"‘l S Em-i;z =—fn
(m=2,384,...;14,t are constants adjoined to ¢, and t,):

‘ A|+B|+Zx+—3|='ﬂ%ﬁ'-

.Alp'l + BxPz‘+711;1 +§|;2 = al;;a‘ = 514‘:51 ' (33.12)

Api+ B+ A+ Byi= Bk

In the case of unequal complex parameters the system (33.11)
always has a solution as 1its determinant 1s nonzero. For the four

E coefficlents A, B, ;; B, ve have only three equations, but certain

definlte constant stresses correspond to the functions 4:z: and
B12s5:

T
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ag=E:j1 °_£dﬁL.§ —a—a " Bh+F (33.13)
o . & a )

bl » Oy— ’ zll bl
The constants Ay and By remalin arbitrary.

In this way we can obtain formulas for the stresses in a
case of arbitrary distribution of the external forces. The series
(33.6), after which both Am and Bm can be obtained from Egs.

(33.11), prove to converge absolutely and
steadily in both the case of distributed loads
and the case of loads in the form of concen-
trated forces. A calculation of the stresses
according to the functions ¢, and ¢, is gener-
ally connected with certain difficulties which
cannot be avolided as yet.

It is interesting to note that in the
case of an anisotropic round disk where b = a
and the parameter v 1s equal to the polar angle

P we do not obtaln any essential simplifications.
g The problems on the equilibrium of the elliptic
Fig. 62 plate and the round disk prove to be problems

of almost the same difficulty. This does not

hold true, however, fcor the case of the iso-

tropic plate; the problem of the stress dis-

tribution in a round plate 1s much simpler than
the same probliem for an elliptic plate.

Of the particular cases of load (disregarding the trivial
case of omnilateral compression or extension) only a single prob-
lem has so far been reduced to numerical results: the case of the
compression of a round orthotropic disk by two equal forces P ap-
plied at the ends of the diameter (Fig. 62).

The solution to this particular case was obtalned by Okubo
(by a method which differs a little from that discussed in the
given section, but which 1s also based on a complex representation
of the stresses in terms of two functions of complex variables).

Okubo constructed a stress distribution diagram for a certain
disk diameter at which the ratio of Young's moduli for the princi-
pal stresses is equal to 5.9 and the complex parameters are u: =
= 2.3077 and p2 = 1.0537, for compressions in the principal direc-
tion of elasticity and at an angle of 45° to the principal direc-
tion.*

The graphs of distribution of normal str sses cy with respect

to the diameter of this disk, which is perpendicular to the line
of action of the force, are shown in Fig. 63. One of the graphs
has been drawn for the case of compression in the direction of the
diameter along which Young's modulus is highest (E, > E;), the
other for the compression along a diameter which corresponds to
minimum modulis (E, < E;). In the same figure the dashed line
shows the distribution curve of cy in an isotropic disk. In all

three cases the stress of maximum absolute magnitude acts at the

- 151 -



~\§ﬁ

b o~
-
~

E,<E,

Y 1YYY T
L7 ////////:///////7//10 r////////////{"/////ﬂ)%- -
\ 1

- : ’ L B
Fig. 63

point of intersection with the line of actic of the force. It is
determined by the formula

S = K, (33.14)

where a and h denote radius and thickness of the disk. Approximate
values of the coefficient K are equal: for E;>E, K=5, for

E,<E, K=22, and in the case of i1sotropic material (E,=E;) K=3.

As regards the stress O, at points of the same diameter it is

found to be much smaller than the stress ¢

§34. DISTRIBUTION OF STRESSES IN A ROTATING HOMOGENEOUS ELLIPTIC
PLATE

Let us assume an elliptic homogeneous (rectilinear-anisotrop-
ic) plate rotating with constant angular velocity w around an axis
passing through its center, perpendicularly to the plane of the
plate. The axis of rotation is considered to be a perfect mathe-
matical straight line. The solution of this case has a very simple
form and can be obtained by elementary means.*

|
. '. B‘ ' .

Fig. 64
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We choose the directions of the axes x and y as shown in
Fig. 64. For definiteness we shall assume that nc external forces
are applied to the edge of the plate and that displacements of
the edge points are quite unrestricted. The plate 1s not supposed
to be orthotropic and Eq. (33.1) applies to it.

The stress components, averaged with respect to the thick-
ness, are determined according to the formulas

bS5 -5

I e D ERN(E-S ) CI
1 ,2ry : '
t”=_§i R

Y 1s here the specific weight of the material and g the accelera-
tion of gravity

A= bt 5 ‘411‘—“2':'?“130’+an 3
3 o O
. uct -+ (2813 4-agg) +'“.a (34.2)

C=—.

This stress distribution satisfies all equations of the plane prob-
lem where the volume forces and their potentials are equal:

S, oy, o1 L.
X=Tox Y=Toy U=—5-(x'+5) (34.3)
and the boundary conditions ¢,=0, t,=0.

The maximum stress Ty (tensile stress) in areas normal to
the edge is obtained at the ends of the minor axis of the ellilpse:

1 . ayct 42293 4-ay
g e 3ayct F (2ay;-F agg) 34 3agy.” (34.4)

O.::

The stress at the center is equal to

% - 1 a? ayicd 4+ 0,5ag,c3 -} agy

£ 3ayict + (20134 agg) ¢+ 3agg * ( 3“ .5 )

When the elastic constants of the material satisfy the condi-
tion ag>4a;;, the highest stress of the whole plate 1is reached at
the center and it is determined by Eq. (34.5).

The stress distribution in a round dlsk of radius a rotating
about an ideal axls passing through the center (Fig. 65) is ob-
tained when we put b = ¢ and ¢ = 1. In polar coordinates the

stress components depend only on the distance r from the center
of rotation:
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a,="§;(| _.;i‘)(az_,a).
=R [(1 = 2@ —m+Bn), (34.6)
f"==0; a7
+ 281y 4 ~
A =a‘3au ?{??au ::’a,, :-naa,, * (34, 7)

In the case of an lsotropic disk with the Poisson coefficient v
we obtain the well-known stress distribution:*

0. =T 3+

r 2‘ 4 (a’—’z)n
799 (34 v 143 (34.8)
w=T (T e —2n),
‘!')=0.

All the above formulas only permit the calculation of stresses

averaged with respect to the thickness. In fact the stresses vary
with the thickness, l.e., they also depend on the coordinate z di-

rected perpendicularly to the plate with the origin in the mid-
plane.

When we denote by = % "o the true stresses in the plane
and by Q”J; v, their mean values with respect to the thickness,

the formulas which take the stress variation with respect to
thickness % into account can be rewritten as follows:

- o (4

°z=°z+12_i'8(_4_—322)'
- qod o [A3

‘U'=d'+7g—6(—4——'322).
- w3 h?

o ="+ 5z D(§ —32).

a.=1“=1,,=0.

(34.9)
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The constants B, (¢, D for the ellipftic nonorthotropic plate
are determined from the following equations:

- 4.
Ba,;+ Ca,; + Da,g = 3_44(01352 + 3“23)—%(011 + Ec’%‘)-

° A 1
Ba,,+ Cazy+ Dayg =m(3a‘,+%‘-)——3(amc’+ ayy), ’ (34.10)
o4 .
Ba,g+-Cayy+ Dagy = ~ gipt " 98

[aij are the elastic constants from the equations of Hooke's gen-
eralized law (2.5)].

In particular, for an elliptic 1isotropic plate we obtain

1 - v
8 =0 =F,2 =030 3==—F,
aee=_2%*:i' 15 =0z = 13y =10; :
B 2 44D +MFA@ALD (34.11)
T3(1—w) 3ct 42343 '
> @2 A DNA 424 (2 43 v
—30=%" 3ev 27 F3 v
D=0. N

§35. STRESS DISTRIBUTION IN ROTATING CURVILINEAR-ANISOTROPIC DISK

It is not difficult also to obtaln the stress distribution

in a rotating round disk whose anisotropy is not linear but cyl-
indrical.

Let us assume that the disk represented in Fig. 65 possesses
a cylindrical anisotropy with a pole of anisotropy located at the
center and, moreover, that it 1s orthotropic so that every radial
plane is a plane of elastic symmetry. The stress distribution in
such a disk, for both the case of a massive disk and that of a
disk possessing a round hole in the center, is obtained with the
help of a stress function only depending on the distance r. This

function is the solution of the nonhomogeneous equation (12.11)
where

Tm—er (35.1)
It reads
F o) = Ak Brih Croig Dt TG — R — 2. (35.2)
Here
=y 2. (35.3)
E; Ev are Young's moduli for the principal directions, the radial

direction r and the tangential one 8; v, are Poisson's coeffici-
enfs; vy is the specific gravity of the material and w the angular
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velocity. For the stress components and the projections ot the
displacements the following general formulas are obtained:

%€C0+4ﬁ“ﬁ+bu-Mr44 1“ Rk AT

py < 14
o.i=C(1+k)krt—l—D(1—k)kr-t-t—%%%r*. (35.4)
. ‘ﬂﬂ'o; . 0
! k'—v
=C(l+k)(k—v.)r* D(l—k)(k+y.),—k_T_ g‘—‘: o,
4y =0. - (35.5)
.=

We have here omitted the constant B as it corresponds to a
many-valued displacement uy proportional to the angle 6; rigld
displacements have also been neglected. The constants ¢ and D are
chosen such that at the rim and also at the edge of the opening
the necessary conditions are satisfied.

A solution of the problem of the rotating disk, massive or
weakened by a central opening, with free peripheral edge, has
been found by G.S. Glushkov. Let us give the formulas for the
stress in a massive disk:*

o =23 R ) - (5]

°l=‘1°:' ) g_fk': [(3'+ ”0)(%)k_‘—‘-k(| +3Vr)(£’)2]- (35.6)
T =\u

With A=l w=v, =4 ywe obtain the stress distribution in an
isotropic disk [see (34.8)]. With materials for which k > 1, i.e.,
E\>E,, the stress components in the center of the disk are van-
ishing and the stress becomes highest at the edge of the ring:

(=22 e (35.7)

With such materials for which k < 1, i.e., Ev<E, the stress
must increase with decreasing distance to the center as this re-
sults from Eq. (35.6). In such cases the stresses must be concen-
trated around the pole of anisotropy, similarly as the concentra-
tion ﬁn a disk which is uniformly loaded at the rim (see §26 and
Fig. 45).

When the peripheral edge of the disk 1s fixed to a perfectly
rigid ring which cannot be deformed, the condition#, =u;=0. must
be satisfied on it. On the basis of the general formulas (35.4)
and (35.5) we obtain the following stress distribution for & mas-
sive disk:

o) o ()
Q= g (9 A7) [k (& + v) ( ) — (k24 3v) (%)z] ,

‘!'.==°

(35.8)
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On the surface of the contact between disk and stiff ring we
obtain the following stresses (compressive):

(u,.)a=——-—l—--m, (o0)g == v (9,),- (35.9)

Also in this case with k<1 (E;<E,) the stresses will be con-
centrated at the center.

§36. ROTATING NONHOMOGENEOQUS CURVILINEAR-ANISOTROPIC DISK

Using the results of the preceding section and the method de-
scribed in §27, we can obtain the stress distribution in a rotat-
Ing disk consisting of a series of annular layers soldered or

glued together, which possess cylindrical anisotropy and different
elastic constants.

Let the disk shown in Fig. 46 (§27) rotate with constant an-
gular velocity w about an axis passing through the center. The
center 1s assumed to have a round opening. We consider the case
where the peripheral edge and the edge of the opening are free
from external loads and their displacements are not subject to
any limitations, i.e., p = ¢ = 0. We again use the denotations of
§27 and introduce additionally 1m(m=1,2,...,n), the specific
welght of the material constituting layer number m. In the case
given the volume forces must be taken into account whose poten-
tial is for each layer equal to

, (36.1)

Denoting as before by 1 and qp normal forces acting on

the inner and the peripheral surfaces of layer number m (9o=¢n=0),
we obtain the following formulas for the stresses and the radial
displacements in this layer:

s S o I N D
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The unknown forces 9, are determined from the conditions of

equality of the radial displacements of the points on the contact
surfaces:
with ’=am—l u:_"'“”:ui”‘), (36 u )

Hence we obtain the "equation of three forces"
from Eq. (27.6) only in its right-hand side:

which differs
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Sy (36.5)
£

Im+18m+1%m+1+ Im8mbm + Iin-18m 18y ==
.\ (m"-—:l, 2...., n—l).

The coefficients a and Bm are determined by Eqs. (27.7), Gm by
the formula

b _1m (l+3~£"’ R 1—2c.'§."'”+c’.f“)-__

m— 9— k:‘ Eﬁ‘m) - E‘gm) m 1 — CZ-)(-

. -1 +1
2 m+1) m+1) m+1 2k
9—km“ E‘, E‘. l_cm;‘l‘l‘l

Tms (1+3v£'"“’ 349y 1—2c“m+*‘~'+c,',.*"'“) (36.6)

Attributing the values 1, 2, ... up ton — 1 to m, we can
determine from Eq. (36.5) successively all unknown forces on the
contact surfaces entering the stress formula (36.2). In particular,

when the disk consists of two rings (see Fig. 47 where p = 0) we
have

n==2, q,=-—g—-'—pl—- (36.7)

The stresses in a rotating disk or ring, displaying cylin-
drical anisotropy and being orthotropic but having variable modulil
and Polsson coefficients and constant density y, are determined by
means of the functions fo(r) according to the formulas

9, = r —'ﬁrz’ ‘°.=f°”(")—%f2, ‘tr)=0; (36-8)

The function f, satisfies the inhomogeneous equation with
variable coefficients

S
o ' (36.9)
=12 f(3__o,__E0 wolpr o
=5 (B2 2) (55— )
A general expression for fy can be written in the form

fo=%,(r)+ Ap, (r)+ By, (r). (36.10) 4

where @, and 9, are linear-independent particular solutions of

the homogeneous equation corresponding to (36.9) while ®, is an
arbitrary particular solution of the inhomogeneous eguation. The ;
constants 4 and B are determined from the bcundary conditions on %

the peripheral contour and the contour of the opening (if it ex-
ists).

In the simplest case Young's modull are power functions of
the distance and the Polisson coefficients are constants:

Lpmeint s e o o E L

il

E, = Epur™, Ey=Egmr™ =const, v,=1v, g'.: (36.11) ;

(m 1s an arbitrary real number). In this cace the particular solu-
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tions %o ?1» 92 are also power functions of the distance r. Without

discussing all possible cases in detail, we only give the solution
for the massive disk with free peripheral edge:

T I B
qela? 1 \

a..~=. £ 9—&'—(3—v.)mx , . r (36.12)
X [@+w—mn, (2)" — -3 —wm (2)].

‘!'2:=0 . L o

=V B weEETETAal) (36.13)

With m = 0 we hence obtain the well-known solution for a
curvilinear-anisotropic disk with constant Young's moduli [Eq.

(35.6)1.
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Chapter 6

DISTRIBUTION OF STRESSES IN A PLATE WITH ELLIPTIC
OR ROUND APERTURES

§37. DETERMINATION OF STRESSES IN A PLATE WITH ELLIPTIC APERTURE

In the present chapter we shall consider the problems con-
nected with the determination of stresses in a plate weakened by
an opening and deformed by forces acting on its midplane. It is
well known that in an isotropic plate with an opening, which is
not filled and not reinforced, the influence of the opening, com-
pared with a massive, nonweakened plate, results in an increase
of the stresses at certain points around the opening. This effect
has been called the stress concentration. The problem of stress
concentration in an 1sotropic plate has been developed rather
completely, for various cases of apertures and loads.¥* In the
case of an anisotropic material it is cnly the problem of the
stress distribution in a plate with elliptic or round aperture
which has been studied in sufficient detail; for a series of
other cases of apertures we only have approximate solutions at
our disposal. In the following we give the solutioans for a series
of problems of stress distributions in an anisotropic uniform
plate with elliptic or circular aperture, not filled or filled
with a rigid core or a core of elastic material with different
elastic properties.

Let us consider an anisotropic plate which is homogeneous
but generally nonorthotropic, of arbitrary form, weakened by an
elliptic aperture and deformed by forces which are distributed
along the edge of the aperture and act on the midplane. If the
aperture dimensions are small compared with the plate's dimen-
sions and if it 1is not near the edge of the plate, the problem
can be simplified by assuming it infinitely large, thus neglec-
ting the influence of the peripheral edge. With this statement we
shall consider the problem.

To begin with, we consider the first fundamental problem
with given external forces.

The directions of the axes x, y colncide with the principal
axes of the ellipse (Fig. 66) and we use the denotations: a,, are

the elastic constants of the equations of the generalized Hooke's
law (2.5) or (33.1) written for the given system of coordinates
z, y (they are assumed known); a, b are the semiaxes of the el-
lipse; A is the thickness of the plate, Xn’ Yn are the projec-

tiens c1” the forces acting on the edge of the aperture (per unit
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Fig. 66

area); Px’ P ~are the projections of the principal vector (re-

sultant) of these forces.

The contour equation of the opening
reads in parametric form:

x=acosd,
y=bsiﬂ0, (37'1)

and the given forces are taken to b

U which varies from 0 to 2% with
tour.

e functions of the parameter
a full circumvention of the con-

We use a complex representation of the stresses, by means of
the functions ®,(z) and @,(z) [see §8, Egs. (8.2)-(8.6)]. The
functions ¢, and ¢, must satisfy the boundary conditions (8.7).
We expand the given forces Xn, Yn in Fourier series. The bound-
ary conditions (8.7) in the general case willl then read

WRe(@(2)+Pa(@N= T 0 LU
R P = _t :"
=m0 tat Y (o™ o ~),
..' I : ’ : . '-‘ ' .- .‘ " (3702)
2R°[P1¢1(21)+qu’z(?z)] =i Co LI ¢

=— 22 0Byt 3 o™+ B, |

Mmmy

Here s=¢" a,, B, arpe given'coefficients, complex in general, and
depending on the law of force distribution along the jet of the
aperture; a,, B, are quantities which are adjolned to the former;

%o, Bo are arbitrary constants. The stresses must tend to zero as %
the distance to the aperture increases.

The solution is obtained with the help of the function*

S e

. . © _ _
Py(2)=Ag+- At - Y Bz st o
° P — 2 I
et B1— g
(-4

(I)Z(ZZ):BO—}—BIH cz—— E Bin —piam e

(37.3)
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(=2t :‘_,:lb i a,=-’=+’:3_,; bt (37.4)

are functions which assume one and the same value at the edge of
the aperture, namely o=e%, A4,, By are arbitrary constants and 4
and B are constants determined from the equations

. - —~ Py e )
A+ B~ A B=g
mAtw B—p A—jp B=— T2
nhi
. . (37.5)
WAt B—2 At 28 T %a By
i )

1 @ Py +“’u Py
By e By Ba - Om 2hi ay 21!/11

As the explicit expressions for 4 and B are too complicate
we do not give them here.

The derivatives of the functions ¢, and ¢, read

SN 1 ¥ B em) |
Pile)= zz—a — ppo? (A 'Elm Wi~k E )' ( 6)
me- 37.
R (a+2m’m—”*“'~ -"')

. t mel

On the contour of the aperture they take the form

ol ‘ o l j Bm—l“ n o-m
ItI) {(asin®— plbcosﬂ)( 2‘ pl—z )'

I'.__': e l‘ . pm‘—'l"l“ LR,
q)z_ll(aslne—mbcosﬂ) (B—}-—>_‘m PL— Pa" ° )

mm=l

(37.7)

The stress components are determined from Eqs. (8.2) and
the projections of the displacement from Egs. (8.3).

Let us give yet another formula which will often be used in
what follows. The stress oy in areas normal to the edge of the
aperture, at the edge of the aperture itself, is equal to¥

S 2
0 = JTSin?0 - b3 cos?o X

(s,a5in 8 4+ b cos 8)2 Mw—vfm _ml
{- alslna—p,bcosﬂ ( Ar le )_ (37.8)
V= o '

_l(r,asln&—{—bcos 8)2" Bm l~‘1 m ) “
asind — pabcos B (B+24m Pl—Pz ° “)}'

If at the edge of the opening the given displacements u¥*, v¥* are
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“.=a0+,.2.‘(a'"°m+zm°-m)' (37 9)
@ =Pt 2 Eaom+ "),

and the projections of the resultant forces (whose distribution
along the contour is unknown), the functions ¢,, ¢, determined
from the boundary conditions (8.8) have the form

B@) = A+ A0+ [40,—Bps 5 0 (aitar)] g +)

c+ S s Bar ™
L S | (37.10)
$;(2z)) = By+BInl; — [aqu—ﬁlpx +'§ “’(lqu+apx)] E—

©
1 = R -
'_'D' 2 (“m‘h‘—ﬁmP;)Cz m.

. . . L
- . .

Here A¢, Bo are arbitrary constants; 4, B are constants ob-
tained from the same equations (37.5); Pu Pu g, g, are constants
determined by Eqgs. (8.4);

D = p,3;— P2 (37.11)

w 1s a constant expressing the rotation of the plate in the xy-
plane, for the determination of which we must formulate addition-

al conditions of reinforcement (in all cases considered below w =
=0).

The functions of the complex variables Ti(z) and %.(z2). which
represent the solutions to the problem considered, are determined
in the form of series. This method of solution is not the only
one. G.N. Savin suggested another method of solving the problem
of stress determination in an anisotropic plate with elliptic ap-
erture, based on the application of Schwartz's formula, which is
well known in the theory of functions of complex variables; the
expressions for the functions ¢; and ¢, are obtained in the form
of integrals taken along the contour of the unit circle.*

When the resultant vector of the forces given on the contour
of the aperture is equal to zero, Eqs. (37.3) for the functions
of complex variables may be given a new but also integral form:

N U fimtah .y
e T EE A
C . 1’ PR (37.12)
el
B@)=— g5 Joogey T B
Here ' !
. 2 “ " o0 ’ o ©
/,.-=j'x,,ds. f,=—f}'nds, (37.13)
Y °
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ds 1s the arc element of the apertural contour, ¢=e" is a point
on the contour y of the unit circlelt|=1. 8. & determined by Egs.
(37.4), Ao, Bo are arbitrary constants. These expressions for the
functions ¢, and ¢, may be more convenient than the series expres-
sions (37.3) (e.g., 1n the case where concentrated forces are ap-
plied to the contour or where part of the contour is free from

loads while on the other part a uniformly distributed force is act-

ing, etc.).

It 1s sometimes more convenient to use representations of
stresses and displacements in terms of the functlons ?,(z) and

?gzzz)?f the variables ., 4\7 2l—z4)2 [(see Egqs. (8.11) and

We give the form of the functions ¢; and ¢, determining the
stresses and displacements in an anisotropic plate with elliptic

aperture, at the edge of which the forces or displacements are
given:

o, (z))=2A —{-Alnt + )J Anti™,

92(25)=B°+Blnt,+ 2 Bty ™ (37.14)
I n=i

Here

2+ Vz;’-— 2(a* 4 8, — (a2 — 8% (1 +23)
ot bF(a—b)ix . (37.15)
(k=1,2). 5

t"‘——

On the contour of the aperture ¢, = t, = o. The constants Ag, By
are arbitrary; A, B depend on the vector sum of the external
forces and Am’ Bm are determined from the boundary conditions (ac-

cording to what is given at the boundary).
§38. PARTICULAR CASES OF LOAD

Let us give solutions for some particular cases of stress
distribution in a plate with elliptic aperture.* We restrict our-
selves to the functions ¢, and ¢,, the coefficlents a,,?m and
the stress oy on the whole contour of the aperture and in individ-
ual points of 1t; the formula for oy 1s left in its complex form
as the separation of the real part (1.e., the actual execution of
operations represented by the symbol Re) results in very cumber-
some expressions which take much place without beling of particular
interest. In all cases considered, each of the functions ¢, and ¢;
is not represented by the series but only by its first or second

term. The expressions for the complex parameters are generally
different:

po=aBl =143 (3>0,3>0).

In the formulas we use the abbreviated denotations

o
I
| n

1'='1."Sin?.0+b2cos'~'0, (38.1)
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Fig. 67

|. Equilibrium pressure on the contour of the aperture. Nor-
mal forces g are assumed to act on the whole edge of the aperture
in uniform distribution (per unit area, Fig. 67).

BE= AT g == REg (8.2
;l=—12-‘-1-, E:-——qb—" (38 3)

' le-W
Re [ (@ sin & — p;b cos 8) (asin & — pyb cos 8) X

X [(u,pza — b —Ip,b) a% sind 0 41 (p,p; — 2) a2b2sin? O cos & -
+ (2;1,;12 —1) a2b? sin 0 cos? 0 + (b8 4 pa — b)) b3 coss 0]1 (38.4)

0’-'—-_-'

At the points A and 4, at the ends of the major axis (Fig.
67) where 9 = 0 and 9 = ™,

L [(a=+¢;*)_u§6+w) +‘(aﬂipﬁ+1’iv)]' (38.5)

In an isotropic plate at the same points
oy =g (—1420) (38.6)
At the points B and B, at the ends of the minor axis (Fig. 67),

where 0 =% g _3
2 2’

— B3y
=g(ar—p+EL). (38.7)
In an isotropic plate at the same points

°o=9(—l-l.—.%). (38.8)

In a nonorthotroplic plate the distribution of the stresses
0oy along the edge of the aperture are found to be symmetric only
with respect to its center 0. In the cuse of an orthotropic plate
in which the directions of the principal axes of the ellipse co-
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Fig. 68

incide with the principal directions of elasticity the oy distrib-
ution also beccmes symmetric with respect to these axes.

2, Tangential forces uniformly distributed along the edge of
the aperture (Fig. 68). The functions ¢; and ¢, have the form
(38.2), but in the given case

q=7 Bh=—7. (38.9)

where t is the intensity of the forces and

le-%
pqb cos 8) (asind — pgb cos 9) X
X ((p.‘q + pa0 4 fpyp,0) a3 sin3 B - (2 — pypy) 0% sin2 8 cos 0 - (38.10)

+ (2pyta— 1) ab% sin D cos? D - (a-|-1ge, b -ips,b) 53 cos® o).

4
°’=—FRel (@sin§—

3. Tension. A plate is extended by the forces p applied at
a sufficiently large distance from the aperture (theoretically at
infinity) and attack at an angle of @ relative to the major axis

a (Fig. 69); the edge of the aperture is free from external
forces.

-~
!

e Ay =

i, ’ /P
. ’ o 7

' /g/ /
S /“b %, //{f
/ A a 0,//“[‘? A {/f‘;
1£:,, 74 .
Pj// T

e

Fig. 69
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The stress components are obtained by means of summation over
the stresses in a massive and uniformly extended plate

o) = pcostq, og=psin2q>. tiy:psincpcoscp (38.11)

and the stresses obtalned by means of the functions ¢, and ¢, of
the form (38.2), where

a-lz__p_slnv (a smcp—lbcosq;)

(38.12)

= = = (asiny - ~1b cos ).

Let us give the expression for the stress gy 1in the case
where ¢ = 0, 1.e., the plate is extended in the direction of the
z-axis (Fig. 70):

a? pb ) o=t
qoz_—_—_pT,- sin? § +—I—2—RC[ (asln9-—bec°5 {))(a:an—HbCOSO) X

(25
><KPr+PﬁﬂsﬁM04%2—Pwﬂ“%5m20“”"4¢°”¢"”' (58,13
At the points A4 and 4, (Fig. 70)
oy — B (38.14)

Pw+ww+m

In 2n isotropic plate at the same polnts 9y ==— p-

I\
- 8 —
P b =F
-‘-‘ g g L Ay >
; - I
= -
s - -
- ,‘ ’ —
Fig. 70

At the points B and B, (at the ends of the diameter perpen-
dicular to the tensile forces, Fig. 70)

o,=p(l+-$4c_—n)‘. (38.15)

At the same points in an 1sotropic plate

a°=p(l+c£).. (38.16)

4, Shear. A rectangular plate witn an elliptic aperture in
its center 1s deformed by tangential forces of the intensity ¢,
which are uniformly distributed with respect to the sides; the
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majJor axls ol Lhe aperture makes an angle of P with one of Lhe
sldes.

When the dlimensltons of the aperture are small comparcd Lo
the slde dimenslons, the plate may be consldercd Infinitely large
and the tenslle forces ¢ are applited at tnfinlty (Flg. (1), The
stress distrlbutlion 1t obtalned by addinge the strescen tn Lhe
massive plate

02, =z Lsln 29, o; = . fsin 20, t:y =:4cos 2y (48,17 )

and the stressceus obtatned by means of functlons of the form (38.2)
where

2

(-- asln 29 -{-1bcos 2¢),

l=:

( acosp | (b sin29). (38.18)

<
n

“
O R T

In particular, with ¢ = 0 (Fip. 72) we obtain the followlng
law of stress distributlion on the edge of the aperture:

ab ¢ le-% .
o= —tg s 2 5 Re | i b cos 0y (e T = pg cond) X

XU(p18 -+ po0 — ) a®sin® D+ (2 — pyp) a2 sin? Dcos D4 (38, 19)
£ (1—2p,p,) ab? sin 8 cos2 & + (a— s, b—Ips,b) 6% cos? 01].

5. Bending of plate by moments. A rectangular beam-plate with
an elliptic aperture in its center is bent by the moments M. The
majJor axls of the aperture makes an angle of ¢ with the axis of
the plate (Fig. 73).
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In the case of small dimensi
assumed infinitely large.
ding the stresses in a mas
bending#

ons of the aperture the plate is
The stresses in it are obtained by ad-
sive plate-beam corresponding to pure

M ; k
ag:-.-l_()_:cos?-—xsm:?)cos’(p.

— M () cosp— x sing)sin?
of =7 (ycc?scp - xsincp)s'in P (38.20)

; M L )
= T.(y €os @ — X sin cp)_jsin PCOS P,

and the stresses obtained by means of functions of the form

o e 10
b (z)= Bh,
18 M=l g (38.21)
A
Py(z)=—21—"T12. -,
where ' ' Tk (’
- =—_%sin ?('bzcos‘!'?'_azsin29+labsin2?)- (38_22)

Ez = % cos ¢ (b2 cos? ¢ — a2 sin? @+ labsin 2?):

In particular, if the axis

of the aperture is parallel to
the sides of the plate,

i.e., 9 = 0 (Fig. 74), we obtain

Mb a3 5, Mb3 ’ le-2¢8 . P . g

99 ==~ 7 sin? D +W Re [ (asln 8 — ;b cos J) (a sin § — pzb cos 8) X
d - ¥ . (38.23)
X es-Fpo) a®sin® 4 (2—p,p,) a2 sin? 0 cos 0443 cos? 0]].

At the points 4 and 4,, at the ends of the diameter directed
along the axis of the plate-beam (Fig. 74),

oMb By 4-ab .
"= @ R e

so that in an isotropic plate, at the same points, gy =0,
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At the points B and B, at the ends of a diameter perpe .dic-
ular to the axis of the plate-beam (Fig. 74),

o==22(1+152), (38.25)

and at the same points of an isotroplc plate
a==22(143). (38.26)

G.N. Savin considered the case of bending of a plate with an el-
liptic aperture, with constant intersecting force and some other
cases.*®

In all the cases discussed the distribution of the stresses
oy along the edge of the aperture in an anisotropic and, moreover,
nonorthotropic plate 1s governed by much more complicate laws
than the distribution in an isotropic plate.

The stress distribution is symmetric with respect to the cen-
ter of the aperture but in generai nonsymmetric relative to 1ts
axes. The formulas for the stresses at the points 4, 4:, B and B;
at the ends of the axes of the ellipse give an 1ldea on the concen-
tration of stresses (at least for the orthotropic plate in which
the principal directions of elasticity are parallel to the direc-
tions of the aperture's axes and ¢ = 0). All formulas remain val-
id in the case of a round aperture where b = a and ¥ 1s the polar
angle 6 reckoned from the xz-axis.

§39. STRESS DISTRIBUTION IN AN ORTHOTROPIC PLATE WITH A CIRCULAR
APERTURE

In this and the following sections we shall consider some of
the most interesting cases of stress distribution in an orthotrop-
ic plate which is weakened by a round aperture of radius a.¥*¥

In all cases the origin of coordinates is placed at the cen-
ter of the aperture and the principal directions of elasticity are
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taken according to the directions of the axes x and y. We use the
denotations which were partly encountered previously, namely: F;,
E, are Young's moduli, v,, v; are the Poisson coefficients and G
is the modulus of shear (all for the principal directions), u,,
y, are complex parameters, solutions of the equation

Moreover, we introduce the notations

E, '

k=—pp,= "’ "=—1(P1+Pz)=l/2(i‘g‘;‘_‘”|)+%; (39.2)

b 1s tne polar angle reckonzd from the x-axis, Ee i1s Young's mod-

ulus for extension (compression) in the direction of the tangent
to the aperture's contour, connected with the elastic constants
for the principal directions by the formula

L sin® 1 AAP cos¢ 8

5= —}—(—G——E—:)sm’ﬁcos’e-{— , (39.3)
Let us give by the way the formula for an orthotropic body which
will be used in the following

E,
P§+‘Pg=2"1_'_a"' (39.4)

In all cases we point out the expressions for the stresses
g acting on surfaces normal to the edge of the aperture, i.e.,

on the radial planes arranged at the edge of the aperture itself,
and also formulas for Og at individual points of the contour.

In order to illustrate this we give the results of calcula-
tions and stress distribution diagrams of a plate having the same
elastic constants as a three-layer birch veneer (see §11).

Let us repeat the numerical values of the complex parameters

p=4,110, p,=0,3431, k= 1,414, n = 4,453,

when the x-axis 1s directed along the fibers of the sheet, and
py==0,2431, p, = 2,911, k= 0,707, n==3,153,

when the x-axls 1s perpendicular to the fibers of the sheet.

When we consider such a plate we shall call it simply "ve-
neer,"* for the sake of brevity.

In the graphs the sections representing the magnitudes of
the stresses gy are plotted from the circles on the continuations

of the radii; positive quantities are represented by arrows di-
rected from the center outwardly, the negative ones by arrows
pointing to the center. In each diagram we show in the upper
right-hand corner a schematic diagram of the lcad; the dashed
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lines represent the distribution of the stresses 9 in the 1iso-

tropic plate, which is loaded by the same forces.

. Normal pressure distributed uniformly on the edge of the
aperture (Fig. 75).

o ='q'g_: '_k+ri(sill'=o | kcos2) 4 (1 4 p2(1 +pDsit?bcostt] (39 5)
q 1s the pressure per unit area.

For an isotropic plate Og = q- In an orthotropic plate the
stress 9q is not distributed uniformly along the contour but ac-

cording to a rather complex law, where the difference between the
highest and lowest values of it may be very great.

At the points 4 and 4, on the principal axis z (Fig. 75)
where 6 = 0 and 8 = m,

o .‘"._'l:

W= (39.6)

and at the points B and B,@;:::%) on the other principal axis

9y =g (n— R). (39.7)

A circular aperture, when deformed, becomes elliptic, with
the semiaxes a'’ and b' = 2

e[ —slkg )

(39.8)

In Fig. 75 we show the distribution of the stress Og On the

edge of the aperture of a veneer plate; the z-axis is parallel to
the fibcrs of the sheet. The maximum value of the stress is equal
to 3.04 ¢ and 1s obtained at the points B and B;. The minimum
stress 1s small: it amounts to about 0.1 gq.

2. Tangential forces distributed uniformly along the edge of
the aperture (Fig. 76).

a.:t%sin% [(1 — k) (n — &-— l)-}(i +';lf)'(l +u§)c552”1 (39.9)
(t 1s the force per unit area).

In an isotropic plate ¢=0.

Figure 76 gives the 0g distribution on the edge of an aper-

ture in a veneer plate. The stress distribution along the contour
is very irregular and changes of sign occur eight times. The max-
imum value evceeds t and is uppruximately equal to 1.5 ¢.
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a plate extended by the forces p applied at a grea

the aperture, which act under an angle of ¢ relative to the prin-
cipal direction (Fig. 77), we obtain:

symmetric with respect to the lines of action of the forces and

the
the
the
the

b Blae e iiten (hincialnrs i s R iand ity s piay
b i) (ibpasze Giasat &t 35y il B LAl st sl a i b detinit ot bt fa G h ‘ c ReL
(idia e S bkad SRR S P o e B b i e Ge i !

Fig. 75 Fig. 76

3. Extension under an angle to the principal direction. For
t distance from

a.=p%: {l—cos* ¢ 4 (& + n)sinz¢] k cos?§
~+ (1 -} n)cos? ¢ — k sin? o] sin?2 § — (39.10)
——n(l4—k—#n)ﬁngcosgsm0cosﬁy

In an isotropic plate

oy =pl —2cos 2 (6 —¢)). (33.11)
The stress distribution in an orthotropic plate will not be

lines perpendicular to them; it is only symmetric relative to i
center of the aperture. The maximum stress is not obtained at ]

ends of a diameter which is normal to the lines of action of 4
forces but at other points. ‘
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Figure 78 shows the stress variation along the edge of the
aperture of a veneer plate, extended at an angle of U45° with re-
spect to the principal axes (the z-axis lies in the direction of
the sheet fibers). The maximum stress was equal to 3.3 p whereas

in the 1isotropic plate Coase © 3 p. In this case the coefficient

of stress concentration for an orthotropic plate (K = 3.3) differs
but slightly from the coefficient for the isotropic plate (X = 3).

The stress vanishes at four points: 6 = 13°, 82°, 193° and 262°.

4. Extension in the principal direction (Fig. 79). From Eq.
(39.10) with @ = 0 we obtain

a.—_:p—g—:[—kcos?(l-{»-(l+n)siuzU]. (39.12)

The stress distribution will be symmetric relative to both

principal axes x and y. At the points 4 and 4, at the ends of a
diameter parallel to the forces

O.=——%c (39‘13)

and at points B and B, at the ends of a diameter perpendicular to
the forces,

a=p(+n). (39.14)

One of these values will be highest in its absolute magnitude
for the whole plate, but, without knowing the elastic constants,
we cannot say which. It can be shown that not the stresses at the

points B and B, will be highest in absolute value but the compres-
slve stresses at points 4 and 4,.

EEEEREN

Fig. 79

A circular aperture is deformed to an elliptic one with the
semlaxes a' and b' given by

a;=a[1+_5%(l+n)]- (39.15)
b — (1____2__).

Figure 80 shows the variation of 9q along the contour of an
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aperture in a venner plate extended in the direction of x for

which Young's modulus i1s highest (i.e., along the fibers of the
sheet).

At the points 4 and 4,

op=—0,71p; (39.16)
and at the points B and B,
0y = 5,45p. (39.17)

The points where Cg = 0 are determined by the angles 6 = +
+27°, +153°, -

The graph in Fig. 81 shows the distribution of o, in a veneer
plate extended in the direction of x for which Young'g modulus 1is
smallest (i.e., across the fibers of the sheet).

At the points 4 and 4,

0y =— 1,41p; (39.18)
at the points B and B;
%= 4.15p. (39.19)

The stress vanishes at the points g -=-+29°30", ==157°30".

In this case the concentration coefficient (X = U4.15) is
smaller than in the case of a tension acting along the fibers of

DT Bz

Fig. 81
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the sheet (XK = 5.U45). In the case of an extension transverse to
the fibers of the sheet the difference between the highest ten-
slile stress and the highest compressive stress is not so consid-
erable as in the former case. The ratio of the highest tensile
stress to the highest compressive stress is 7.7 in the first case

and only 2.95 in the second, 1.e., it is here almost the same as
in the case of the isotropic plate.

For a plate extended in the direction of the ax15)1(9:=;)
we obtain from (39.10):

=< pELRI(k-§ n)cost —sin?0). (39.20)

5. Omnilateral extension of a plate. When a plate 1s extended
in the two principal directions by equal forces p (this is equiva-
lent to an omnilateral extension in the zy-plane) we have

°o=p§—:l~k+k(k+n)cos=u+(1+u)sin=el. (39.21)

In the case of an isotropic plate o,= 2.

b
[P
-3
Fig. 82
In Fig. 82 we show the distribution of the stresses g along ;
the edge of the aperture in a veneer plate; the z-axis is directed ‘
parallel to the fibers of the sheet. The maximum stress (at points ]
B and B,) is equal to
'°l=4'04p-: (39.22)
the minimum (at points ¢, ¢,, C,, Cs) 1is 1
oy = 1,09p. (39.23) "
6. Impeded coinression of a plate. When a rectangular ortho-
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tropic plate with a round aperture 1n the center is compressed in
the principal direction but cannot expand in the transverse di-
rection (owing to rigid walls, between which it is arranged, Fig.

83), this corresponds to a compression in the two principal di- -
rections of forces p and va,p.* We obtain

= p gt (k1L — g (k] €057 (1 vk |- m)sin0) (39.24)

ty

m?&:{w&w,wﬁ

Fig. 83 Fig. 84

In an isotroplc plate
oy === p1 4 v-—2 (1 — v)cos 20}, (39.25)
where v is Poisson's coefficient.

A graph of the distributicn of the stress Tq along the edge

of an aperture in a veneer plate compressed along the fibers of
the sheet is shown in Fig. 84,

At the points 4 and 4, f

0, = 0,56p. (39.26)
At the points B and B,
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. 6y = — 5,40p. (39.27)

The dashed lines in Fig. 84 show the variation of o_. in an

0
isotropic plate with Poisson's coefficient v = 0.25; for such a
plate at the points 4 and 41

oy =0,25p, (39.28)
and at the points B and B,

a.=—2,75p. (39.29)

§40. DISTRIBUTION OF STRESSES IN AN ORTHOTROPIC PLATE WITH CIRCU-

LAR APERTURE (CONTINUED)

7. Shear. A rectangular orthotropic plate with an aperture
in its center is deformed oy tangential forces ¢t which are dis-

tributed uniformly along the sides; the principal axes z, y gen-

grally do not agree with the axes of symmetry of the plate (Fig.
5).

Considering the plate to be infinitely large we obtain a
formula for the stress 04 near the aperture

.°a¥f-2ET:(l—}—k—i—ln){—ncos?(psin?')—}— (40.1)
+ (1 4~ £)cos 26 4 £ — 1] sin 2¢). :

In particular, for a plate on which forces parallel to the
principal axes of elasticity (9 = 0) are acting, we have

.°.=_t_2_r‘5_€:_(ll+k+n)nsin29. (40.2)

In an isotropic plate with ¢ = 0

0y == — 4 sin 20. (40.3)

4. b
ty ,005 ’E’
¥ “A LR
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The stress oe on the contour of the aperture in an orthotrop-

lc plate vanishes at four points which, with ® = 0, coincide with

the points of intersection of the contour and the principal di-
rections.

Figure 86 shows the siress distribution in a veneer plate
for the case where the forces t are parallel to the principal di-
rections of elasticity. The direction of the xz-axls corresponds
to the direction for which Young's modulus is highest. The high-

est value of the stress 9q 1s obtained at four symmetrical points
and 1s equal to

Omax = 3,95, (4o.4)

In an isotropic plate we obtain Orax = 4 ¢, 1.e., almost the
same value.

Figure 87 shows a graph of the distribution of the stresses
9 along the contour of the aperture in a veneer plate for the

case where the tangential forces act at an angle of 45° with re-
spect to the principal directions (?=>}) The values of the
stress are highest at the points B and B, where

'a.=,—6,9:.l (40.5)
At the polnts 4 and 4,
oy == 4,9¢. (40.6)
A comparison of the values of the stresses obtained in the
case of deformation by tangential forces attacking at various an-

gles with respect to the principal directions, shows that the
case where the forces have an angle of attack of 45° relative to
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Fig. 88

the principal directions 1s least favorable since the coefficient
of stress concentration is found to be the highest of all possible
values (K = 6.9). On the other hand, the most favorable case is
the case of deformation by forces parallel to the principal direc-
tions for which the coefficient of concentration is 3.95.%

8. Bending of a plate by moments. A rectangular orthotropic
plate-beam with a round aperture in its center is bent by the mo-
ments M applied to two of 1ts sides; the principal directions of
elasticity are in general not coincident with the directions of

the sides and their orientation is characterized by the angle @
(Fig. 88).

When the plate is considered to be infinitely large we ob-
tain
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0, =-Wa. -E:—(k[l —k— (1 4 k4 n)cos 20]sit3 ¢ cos0 -}-

b (n24-£(k 420~ 1)} (n(1-Fn) b R(1-F k- 20) cos 20) X
X sintgcospsint (1 4-n)—-k—(k+n- 1)(1 +-n)cos 2] (40.7)
Xsinzpcos’g:cos')—{—[l—-k—(l+k—}~/1)c052'l]cossc?sin0).

When the direction of the axis of the plate-beam coincides
with the principal axis (¢ = 0, Fig. 89) we have

%‘Jﬂ.%[1_k_(1+k+n)co§golsxne. (40.8)

G°=
For an isotropic plate with ¢ = 0

a°=—2—’ja-sin0c0528. (40.9)

At the points B and B, (Fig. 89) of an orthotropic plate-
beam

a,=:—"j£(1+%). (40.10)

In the case of an isotropic material for these point:

o 2, (40.11)
the maximum value of the stress oe in the lateral sections is
Ma
equal to 0.54—.
AY
e 8
Alﬂh‘ \;_
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When a veneer plate-beam is bent such that the directicn of
the x-axis agrees with the direction of the fibers in the sheet,
the 9 stress distribution graph for the aperture's contour has

the form shown in Fig. 90.

At the points B and B,
Ma

oy= 3,23 "k (4o.12)

and the stress reaches a maximum value of about Q3ﬁ¥- in the lat-
eral sections. The stress vanishes at six points: 0=0° 180> = 47°
+133°.

With the bending of a plate-beam, which has been cut out of
a sheet of the same veneer such that the direction of the fibers
in the sheet are perpendicular to the x-axis, we obtain the Oq
distribution on the contour shown in Fig. 91.

At the points B and B,

a.=—*_—_2.58ﬁ’li._ (40.13)

In the lateral parts the stress does not exceedOﬁﬁ?u

In the case where the beam 1s cut out of a veneer sheet such
that the direction of fibers in the sheet makes an angle of 45°
with the axes of symmetry (9::5), we obtain a o4 distribution on

the edge of the aperture as shown in Fig. 92. The stress reaches
maximum values at the points 6 = 110° and 290°; they are

om=1,54ﬁ'Jl, (bo.14)

Fig. 91
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Considering the bending of a veneer plate with various an-
gles ® we can draw the following conclusions. The least favorable
1s the case where the fibers of the sheet are parallel to the
free ends of the plate; in this case the coefficient of concen-
tration obtained is highest: X = 3.23. The coefficient of concen-
tration has its smallest value in the case where the fibers of
the sheet make an angle of U45° with the axes of symmetry of the

plate:
K = 1.6’"* "t
Let us also consider two cases where not the forces but the i
displacements are given for the contour of the aperture.

O e e

Fig. 93

9. Action of a rigid rod forced in the aperture with fension.
In a circular aperture of the diameter 2aq a rigid rod is forced in
whose diameter 2 (a + €) 1s a little lcnger than that of the aper-
ture. The rod's surface is rough so that the material of the plate

- 185 -




ST i oot g

S

cannot slip on the material of the rod. In this case the edge of

the aperture 1s displaced in a radial direction by an amount
equal to € (Fig. 93).

The solution 1s obtained by means of the functions ¢; and ¢,
of the form#¥

= (40.15)

The normal pressure 9, and the tangential stresses =<, at the

surface of the aperture's edge are distributed according to the
law

g, =— ;—g[k——vl ~- n (sin? 0 - & cos? b)),
;r,=—$n(l—k)sin6cosﬂ. _ (40.16)
where
T — gy k
g=p_7§L34_zT, (40.17)

These formulas show that the rod transmits a compressive
stress to the plate, which 1is distributed nonuniformly over the
contact surface, but which is symmetric relative to the principal
directions of elasticity. Moreover, frictional forces are gener-
ated in the contact surface, which reach their maximum values at
the bisectrix of the angles between the principal directions. The
maximum values of the normal pressure are obtained for either the
points 4 and 4, or B and B, (Fig. 93).

At the points 4 and 4,

o,=—';‘—g—[k(17{—-'n)—.v,]. 1,4==0.

(40.18)
At the points B and B,
a,‘=_;‘E(k+n—v,). =0 (40.19)
The maximum tangential strain 1s equal to
r_u=2;g|l——k|n. (40.20)

For the stress 9 in radial surfaces near the aperture the

formula obtained is much more complex and we shall not give it

here; we only give the values of Og at the points 4, 4., B and
B;.

At the points A and 4,

(40.21)
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at the points B and B,

1R

o= [b+ 2 —u(1+7))- (40.22)

In an isotropic plate with Young's modulus £ and Polsson's
coefficient v we obtain for the edge of the aperture

Er Ee

g = —

ST YT ey =0 (40.23)

For a veneer plate where the xz-axils is parallel to the fi-
bers of the sheet we obtain the following numerical values (in
kg/cm?):

at the points 4 and 4,

S ). 106
oy =— + 0,349 105, (40.24)
at the points B and B,
op=——-0,265- 10%; (40.25)
¢
Ta = - 0,042 105 (40.26)

The mean pressure at the edge of the aperture i1s equal to %.0307.mq

In the plate considered the maximum deviation of the pres-
sure from the mean value amounts to 13.6%.

0. The torsion of a plate in its plane. The edge of the ap-
erture 1s assumed to be rotated through a small angle a (or, what
is the same, it undergoes a tangential displacement aa); on its
outer contour which, theoretically, is at infinity, the plate is
assumed fixed so that it cannot be moved (Fig. 94). This case can
be encountered when the edge of the aperture is held between two
rigid round disks which are rotated through an angle of a or,
when a rod is screwed in the aperture, which is then rotated so
that it takes azlong the edge of the aperture.

The functions giving the stress distribution have the form

(I)l(zl)=—-2a_g..£_’%ll’. u
Dy(2) = g BELDL, (40.27)

Both tangential T8 and normal forces (stresses) ¢, are as-

sumed to act on the edge of the aperture; they are distributed
nonuniformly:
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Fig. 94

q,==——-;-n(l—--k)sln6co§8.

(40.28)

,'.=~__;.(k_..vl-{-n(coszo-{—kslnzﬁ)].

i i~ s i s e e

The maximum values of the tangential strains are reached at
the points of intersection of the contour with the principal di-
rections, and the maximum normal stresses are obtained at the bi-
sectrices of the angles between the principal directions. Com-
paring this case with the previous we see that the normal and
tangential forces seem to have exchanged their positions.

Bt = B S

In an 1sotropic plate at the edge of the aperture

TR =
it

6,’=o.=0. 1;,.=—1—%. (40.29)

Some other cases of deformations of orthotropic plates with
round holes were considered by I.I. Fayerberg.*

§41. DETERMINATION OF THE STRESSES IN A PLATE WITH ELLIPTIC CORE
3 With the help of the results obtained for the anisotropic el-
3 liptic plate and the plate with the elliptic aperture we can de- J
1 rive a solution of the more general problem of the stress distrib- :
ution in an anisotropic plate with a sealed-in or glued-in core
3 of an elastic or absolutely rigid material.
4

Let us conslider an anisotropic plate of arbitrary shape with
an elliptic aperture, in which, without having applied a previous
tension, a core of the same thickness is soldered or glued in
which consists of a different elastic material. The core dimen-

4 sions are assumed to be small compared to the dimensions of the {
e plate and far away from the edge. Arbitrary forces are distrib-

uted on the edge of the plate, which attack at the midplane; vol- '
ume forces do not exist. We have to determine the stresses 1n !
plate and core which are caused by the external forces.¥*¥

e e G0

m—

The axes of coordinates are oriented according to the prin-
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cipal axes of the ellipse (Fig. 95). All quantities which refer
to the core, such as the stress components, the projections of

the displacement, the elastic constants, etc. will be primed to
distinguish them from the analogous quantities referring to the

plate. The equation of the contour of the core is giveu in the
form

x=uacos), y=>bsind (41.1) |
(a, b are the lengths of the semiaxes, a>b) :

In the general case the equations of the generalized Hooke's
law linking the stress and straln components in the plate aver-
aged with respect to the thickness can be written in the form

8, =0,,0; ; %} ayg%zys ‘
8, = 0,30, + 829, -+ QT i (41.2)
Tay = 0169z -+ 0209+ Bee%ry

which also hold true for the core when the aij in them are re-

placed by the constants a'ij of the core material.

When, as in the previous cases, the stralns are assumed
small we can solve the problem approximately, by superposing the
stresses in a plate without core and the stresses in an infinite-
ly large plate with an elliptic aperture; the latter will be cho-
sen such that at the contact surface between core and plate the
necessary conditions are satisfied.

Denoting by F?, ﬁfo;-gw «® and »° the functions of stresses,
stress components and displacement projection 1n a plate without

core which 1s exposed to the actlion of given external forces; all
these quantities are assumed given. The formulas for stresses and

displacements in a plate with core can then be written in the fol-
lowing form:

05 = o3+ 2Re [pid] (2,) + pdd2 (2,)],

o, =0y +2Re| @1(z)+ D2zl . (41.3)
't:,w = t-?-'v — 2Re k"l(b; (z2))+ Pz‘b; (21

u=u’+ 2Re [P, (2)) + py0y ()| — wy + u,, }

v ="+ 2Re g, T, (2,)4 4T, ()] + wx - v, (41.4)

Here ¢,, ¢, are functions for an infinite plate with aperture;
w, 4y, Yo are constants characterizing "rigid" displacements;

2
Px=aypx 1 a;,— agiy ]

—_ an
k= a_l.zl‘k"*"};; — Oy

(41.5) J
(=1, 2); |

Y1, u2 are complex parameters of the plate, solutions of the equa-
tion

S ot
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Gy pt— 2bxeP°+ (282 + agg) p? — 2a,4p + 85, =0, (41.6)
which are supposed to be nonequal.

The stresses 1in an elastic core are determined by means of
the stress function F' which can also be written in terms of two
functions of the complex variables z/=yx+p/y and z,=x+4pty Where

t .
u1 and uz are complex parameters of the core.

Fig. 96

The conditions at the points of the contact surface read as
fcllows (Fig. 96):

Xn=._X':' Yn=_'yl’n }

u=u’, v=1',

(41.7)

After some transformations these conditions take the form

Mel &)+ Pp(el= 4u(F'—F)4-cp, |

2Re [P, (7)) + oy (29 = 55 (F' — PO+ (41.8)

2Re.[.pxq’1 (2)+ P02 () = 0" — -}~ “;y — Uy
2Re (9,9, (2)+ ¢ P2 (2l = V" —¥°- ~wx—1,

The constants ¢ ¢ w4y and vy contained in them are deter-
mined from some simple additional conditions depending on the form
of vhe plate and the distribution of the forces.

Conditions (41.8) written in this form are valid not only
for a plate with an elliptic core but also for a plate with a
core of any other form.

In the case of an elliptic core the form of the functions ¢,
and ¢, is known to us (see §37):

o ) i .
o, (z2)=4;,+Aln :1 + g:lAm:l-m'
mm

c " (41.9)
®,(25) =By +BIn7, -'f-mZ_le’,{"'.
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where

-+ Vzi —a?—pip?

a—lmd (41.10)
(k==1, 2).

k=

§42. PARTICULAR CASES OF PLATES WITH ELLIPTIC CORE

The simplest particular case is that where the stresses in a
plate without core are constant

o=p =g 0 =4 (42.1)

F°=—f_l,~qx’-—fxy+-;-py’- (42.2)

Such stresses are obtained, for example, in a rectangular
plate on the sides of which normal and tangential forces of the
intensities p, q, t (see §13) are distributed uniformly.

Investigations showed that the stresses in the core will
also be constant:

o;--:A, O;=B, :;y=C; (u2.3)
) 1
.F =3 Bx"’—Cx_v-}—?jA_vz, (42.4)

and the additional stresses in the plate, which represent the in-
fluence of the core, are determined by means of the functions ¥,
and ¢, in the form*
. l . . 10
&, (2) = 5 (A—P) bl —(B—q)pya+ |

(p1— B2 .
+(C—HUmb—allg.

q’z(zz)=—‘§—(m—l_'m[(A—p)bl—(B——q)pla—{— (42.5)
HC—Dlpb—a)g. |

g e e T

From the boundary conditions (41.8) we obtain a system of
four equations from which we determine the unknown stresses in
the core 4, B, C and the turn of the core, w' — w, relative to
the plate. We give here the first two equations of this system:

prumiel Slone s st S

v

SO St M
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Pryp B1pa— Papt rY__
A el a)+Ba( P ps — ) |
__Cl(m—pz)a:l(p:a HP')"+a‘qa]+l(w —w)b=
— 1 — M1Py — Bahy __
p(‘m — b H0=Cr a)+q°( B a") ’
{
| | . [(Pl )a:; (:‘Pa pap) b —{—030]
Lt Sand's B S Pz — P'z‘h ty_ ot :_ (’42.6)
A(‘_P b—laj,b— )+B( op— —layb—a, a)
[(‘h —q)a : l_f“t‘h — By b +ala +Iazub] — (o' —w)a=-
=P( ::—% b--la,b—a ma)+q (Pl‘h :101 __Ia”b__ama\)_.
— ] — b
[ q;)a:l_fp:a pad) +acsa+10mb.J-J

The other two equations differ from (42.6) by the only fact
that 1=V"="1 1is replaced by -i.

Solving these equations, we obtain A, B, ¢ and from them the

functions ¢, and ¢, and thelr derivatives entering the stress for-
mulas.

The next case, i1f we order them according to difficulty, is
the case of a plate without core loaded by given external forces

where we ob%tailn the stresses as linear functions of the coordi-
nates:

o == m,x -+ 3m,y, ]

a:=3mox+m1y, (u2-7)
tg, = — mx—my,
FO = 3 (mxd - myxty myy? -+ moyd). (42.8)

A stress distribution of this type will be encountered, for
example, in a rectangular plate (isotropic or anisotropic) with

two or all four sides loaded by forces which are due to bending
moments.

In this case we obtain the following results.

The stresses in the core will also be linear functions of the
coordinates:

oz == Cx 43Dy,
. oy=3Ax-} By, ‘ (42.9)
.t;,.,=—Bx—Cy;
F':%(Aﬁ—l—Bx_*y—}-ny?—}-Dy’). (42.10)

The additional stresses in a plate with core are determined

by means of the functions ¢, and ¢,:¥
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1(44)* °+8(p pLa)[—3(A—mo)p.za’--|-
+(B—m)(a—2pbyadt-
+(C—mz)<21a+pzb)b—a(0—m,>b=1-f.

(42.11)
Py (z) = Bo

0‘1]__»‘) [_" 3(A—m°)!.110:+
+(B— my) (8 — 2Upb)a +
+ (€~ ma)(2a+ p,8)b—3(D—my) ) é

For the constants A, B, C, D from Conditions (41.8) at the

contact surface we obtain a system of rather complex equations.,
The first two read as follows

aA[PIPQ"'PﬂPlaz g bz]+3D[ szz
B1—Py pl
Pr—Prg2y o PxPn-‘P"Pi
~— 2, b -}-a! bz]+13[ =D g o

X ab--aj,a2- QIauab-{—Qazsb?]-}—C[ 21 2L P2 p’)(

X ab _M b2 — a;‘az + QIa’eab —

Pr—p
B1iPa—RaPr 2 ' .
—‘°n=+°w)”’]‘ S [ME2 = T

i —al,a’—aq.b’]+ 3m, ;L._Px £ !)2—210“00 +

s

+a,.b‘]+m [Px p’a’—-}—?l“"’::::p‘ab—{—ama’

' P
. & 2la,,ab -} 2a,.b ] + m, [21 F-:tp_, ab —

2’ —— bz——a“az+210mab—(0u+ am)b’].
P1—pa

3A[HB=tat gy g2 o1y ab]+3D[ A= 5 {
X 8-+ a0+ aiph ]+ B[‘“ Loy oy
X P'q’_ *ab+-(a],+ a},) a2 QIazsab -+ anbz] -+
+C'[ZIZ:_H00—%’!__—%02——20’ =
— 2a’ 1280 —a;, bz]—am [P'Z:;:q—' —@402—
— 21a,,ab] + 3m, [ U007t a0t 4 a,zlﬂ] +

+m, [B=8 g2y g it by """ab+<au+a%>az+

(42.12)

H -

P1— Py Pi— B
- 2ensd o] 4y [2 i =os
__BMGm— g 2—2a,,07— 2g,.ab— g bz].
P1—Ha b 10 . = J

The other two equations are obtained when 1 1s everywhere re-
placed by -1.

From the solution for the plate with elastic core we obtain
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by means of a simple substiltutions or a limiting transition so-
lutions for the limiting (extreme) cases where the core is per-
fectly stiff and cannot be deformed and where the core is lacking
and no external forces act on the contour of the aperture. In the
first case we must everywhere put aj;=0, and in the second, per-

forming the limiting transition, all constants a_.. are assumed in-
finitely large. td

§43. EXTENSION OF AN ORTHOTROPIC PLATE WITH ROUND CORE IN ONE DI-
RECTION

Let us analyze in greater detail the fundamental czses of
strains in a rectangular orthotropic plate with round core which
is also orthotropic and, in particular, inflexible. In all cases
considered in this section and in the following three sections,
we assume the principal directions of elasticity of the materials
of plate and core parallel to the axes of symmetry, which are
taken as the axes x and y. For the elastic constants in most for-
mulas we maintained the denotations aij and aéj as the simpler

ones, and only some of them are written in terms of the "technic-
al" constants. We also introduce the abbreviated denotations

- Sim_/E .
k=—PxPz=‘/;ﬁ= B t=—l+p)

EL 4 2313+ 4ay ;2 2 42 cost
E;_sm o -+ e sn"n 8 cos 0+aucos 6,

(43.1)

where Ee is Young's modulus for tension (compression) in a direc-

tion tangential to the contour of the aperture; £, E; are Young's
moduli of the plate in the directions of x and y;

= 0;fo+ 82 P = aixi"g‘}‘ ;i3

. a (u3. 2)

A =012P1+%v fa =‘f.°xz}‘z+f,- .
. The formulas for the case of equal complex parameters
pr=p3=p! are obtained from the formulas for unequal ui, U2 by
means of a limiting transition.

We only give the final formulas for stresses in a plate near
the core.* By way of illustration we consider a plate with given
elastic constants, which are the same as in the case of the veneer
sheet (see §39) with a core whose elastic constants are twice
those of the plate (aL::QaU) and we also consider the case where
the core is perfectly inflexible (aj;==0) and the case of no core
@Q==an. For a complete representation of the influence of a core
on the stress distribution in a plate we also give tables of the
numerical values of the stresses 9. 745 06 in a veneer plate near
an elastic core and near a rigid core and the stress Gg near the

edge of an aperture which is empty, and we also give graphs show-
ing the stress distribution along the contour of the core (aper-
ture).

Consider a plate with round core, which 1s extended in the
principal direction x by the forces p which are uniformly distrib-
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In this we we obtain:*¥

of ==A, o =8, 1;_y=0,

2 y (43.3)
where
=%Ia“an<k+n)+a“a=~k<l+n)+au<au+aee+aun 1)
=£ [azz(au—au) +“u(a|2—312)k(l -+ n)l,
A =(‘hx%z‘f"011022)k+022(aac+2012)+ L '
+ (810228 -+ agpa1) n — (3, — G122 ks (43.5)
—al  A+tBpl—p 1
qjl(zx)_ 2 B1— ¥ c1 ' (u3 6)
—al A+Bul—p 1 o '
Pa(2) = 2 B1—Pa G’

at the edge of the aperture (and core)

and Og On the contour of the aperture (more exactly, in immediate
proximity of the edge) are equal to

The stresses 9. T4

=§%[A+ ag+ a, + (A 4 a;— a,) cos 2],

, (43.7)
th=— 4 (A ay—a;)sin 26;
=L L (A —a)sind 0 (A (n2— 20) - (k -+ m) oy -
+( +2k)az—- (24 k) (1 -4~ n) ag) sind 0 cos? b - [£2A —
— (1 2k)(k+n)a;+ k(24 k) ag+ k(1 +-n)a) X
X sIn? 6 cost 0 — k2a, cos® B). (43.8)

Here 91 @ a3 a; are coefficients depending on the elastic con-
stants of plate and core:

a, = (@i — a1,) @z (1% — k) -}- |(cy — afy) ale -
+(0|2—'afz)zlk/l—azz(ﬂlz—‘a:z).
8y == (uy — U:I) a3 {-ay (a2 — 0:2) k(1-}n),

ag==(ay, — G:I)(azzn -+ agzk) -}- aza(ay, — ary) + (a52-- ﬂ:z)2 R, (43.9)

ryr ’ .
ay==—(8u—an) dn + (a1 -— a12) [2a12 4 a6 -}~ |

+axl<k+n)1—<a.z—a:z>=-

In pmarticular, for an isotropic plate with core of isotropic

material we obtain: ‘
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o, 2 3-—-v+l+~/+2(l+v+ [,, cosQB]

=Es
fn==—-—e-(‘g‘”+ )sin20
B—v)y , 3—3V42wW 1—v? (43.10)
°9=%{ B T m Tt
' G+9y  14v4ow  1-vT .
+2[ 5 e = ]cos%],J
3+2—-V 2—v Jw 1—v2 d
b="% —+2 e+ g (43.11)

(E, v denote Young's modulus and Poisson's coefficient for the
plate, E', v' those of the core).

The stress distribution in a plate with inflexible core is
obtained on the assumption that o/, =0 in Egs. (43.3)-(43.9) and
E'=c0 1in Eqs. (43.10)-(43.11).

At the points A and 4, of an orthotropic plate (Fig. 97)

el ) ame s 30

where

At the points B and B, (Fig. 97)
=E’2—;ik——~.(l+n)_l- =40, =0 (43.14)

The stresses 1in an isotropic plate with a rigid core are de-
termined according to the formulas:

°‘=p(l+v+3 c0526)

O.-—-VS ,’-———.'p 3_2_v sin 20.

(43.15)

Assuming all coefficients aéj infinitely large, we obtain by

means of a limiting transition from (43.8) Eg. (39.12) which we
know already for the extended plate with empty aperture, and from
(43.7) we obtain ¢,==<,=0, which is evident.

In Table 2 we have compiled the numerical values (in frac-
tions of p) of the stresses in the first quadrant of the aperture's
contour, taken at every 15°, for a veneer plate with stiff core and
with elastic core, whereagy=2s,; and for a plate with an aperture
without core. The tensile forces attack in the direction of x in
which Young's modulus is highest, or,. briefly, in the direction of
the sheet's fibers.

Comparing the values given in this table we note first of all
that in the case where the aperture contains a core, elastic or
rigid, not only the value of the maximum stress is considerably
lower, but also the general pattern of stress distributlon is
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TABLE 2

Stress Components at the Points of the Aper-
ture's Contour

. ’ 3
1 ecrxoe mapo 2 Ynpyroe sapn (ag =2a,) Bés xaps

%° '
- o Y] % o . ) % %
0 1,24 0 0,04 0,84 0 —0,06 | —071
15 1,16 —0,30 0,09 0,78 —0,21 0,03 | —034
30 0,94 —0,52 0,27 0,63 ~--0,37 0,23 0,07
45 0£4 | —0,60 0,52 0,41 —0,43 0,49 0,40
€0 0,34 —0,52 0,70 0,20 —0,37 0,78 0,96
75 0,20 —0,30 0,56 0,04 —0,21 1,19 2,57
%0 0,04 0 0 —0,02 0 1,68 5,45

1) Inflexible core; 2) elastic core; 3) with-
out core.

-

changed qualitatively. This also becomes obvious from the graphs
attached.

In Fig. 98 we show the distribution of the stresses g, on

the contour of the aperture (core) with the veneer plate extended
along the fibers of the sheet. The solid line represents the graph
of the stresses in the case of a core where 8;;=24¢; and the dashed
line the same for the case of a rigid core. In Fig. 99 we show the
graphs of the distributions of stresses o, along the contour of
the aperture in the cases of an elastic cgre (solid line), a rig-
id core and no core in the aperture (dashed lines).

—— ynpyoe #dpo |
- — — Mecmxoe 23pg 2

Fig. 98. 1) Elastic core; 2)
rigid core.

When the core 1is rigid, the stress 9, at the ends of the di-

ameter parallel to the forces (at points 4 and 4, in Fig. 97) is
the highest in the entire plate; it is equal to 1.24 p. In a

plate without core the stress g is highest at the ends of the

diameter perpendicular to the forces (at points B and B,); it
amounts to 5.45 p.
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Fig. 99.

1) Elastic core; 2) 1

rigid core;

3) no core.

The case of the elastic core 1s an 1ntermediate case between

these two; the maximum

sider cores of various
pattern approaches the
m 1ncreases and to the

stress (o4) is equal to 1. 68 p. If we con-

materials for which % =™M8; the stress
pattern of a plate with empty aperture as
graph for a plate with rigid core as m de-

creases.

When the plate is extended in the direction of =z, for which
Young's mcdulus is smallest (transverse to the fibers of the
sheet), the general character of the graphs of stress variation
on the contour of the aperture is maintained; the magnltudes of
the stresses at the corresponding points vary, the points at
which the stresses vanish ar- ~hifted but the position of the
points where the stresses re. their highest values remain un-
changed. The maximum stress is equal to: 1) in the case of a rig-
id core 1.34 p, 2) in the case of an elastic core @.__Qa)L_lﬁOP
and 3) in a plate without core 4.15 p. 4

Hence we can draw the 31mple conclusion that a plate with an
elastic core in which 0-—?0 just as a plate without core, is
favorable to extend unch t:h:l‘r the strains act in a direction for
which Young's modulus has the lowest value. Vice versa, in the
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case of a rigid core the maximum stress is found to be smaller in

the case of a tension in the direction of maximum Young's modulus.

§44. EXTENSION OF A PLATE WITH ROUND CORE IN TWO DIRECTIONS

For an orthotropic plate extended in two directions by equal
forces p (Fig. 100) we obtain the following results:¥

op=A o =8, s =0 (4b.1)
A= (a,ap(k +n)-t a0k (1 4-n) 4
+ 1285 (1 + k1) -}- 200, (1 — & —n) +
. + a3, (a3, + age — an)l,
B=E-(a,,a,,kt (1 4 n) -} azgafy (k4 n) +
+a0,k(1 -} k-bn)-bag,ak(B—n 1)+
g (ay, + agg—awh,

(44,2)

where A is the expression of (43.5);

8l A4 Bagl—p(lbpy) 1
Tila) = 2 B1—pa G
I A4 Bul— .
@A%ﬁz__z ) +-PA_£? th.&.

(by4.3)

The stress components % "% % on the contour of the aper-
ture in the plate are determined by means of the formulas

o = 55 (28 b+ 0, +
- (by— b,) cos 26}, (4h.4)

Ty = — < (bg— by) sin 26;

=2 % ((A—8,) sin® 04-[A (1 —2k+-n?)+

+ (k4+n) b 4 (1 +28) b, — (24 £) X
X (1 =4 n) by) sind 6 cos? 04 [A (k2 — 2k+-n?)—
— (k+n) (1 4 2k) b, - £ (24~ R) by +
-+ k(1 4-n)b,]sin?0cost b4
) - k2 (A —b,) cos® b} (44.5)

(the expression of A has the form (43.5) as in the case of the
unilateral extension).
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The coefficients b b bs gng by are given in terms of the
elastic constants as follows:

by=(8,,—a))a,(n* — k) + ajknl — (@), — ap) o] k24 )
(0, =l oy, (1 — 1)1+ k4 )
e ‘ ‘+(alz—a:2)’k(n—k),
bz = (all - a:l) Y + (azz - a;z) (aun + a:l) k4
+(a,—al) e, +a, k(U +-n))+(a,—a] )2 &,
by=(a,,—a})(a,n+ a8y +(a,,—a})a,, + (4u.6)
+(a“—- ay) a, (1 +k-+4n)+(a,—ap,)k,
b=~ (all—a:l) 0+ (a,,— 33) (2012 +ag -l a,k+ a;l") +
+ (al2 - 0:2) [2012 + Ggg— 4y, + a, (k+n)) +
. +(alz_a:z)z(" -— D). )

,

In an isotropic plate with an isotropic core the stresses are
independent of the polar angle 8 and on the contour of the aper-
ture they are equal to

o =p(143) a=p(1 =) =0, (44.7) |

where

b 3—4v|-V2 21-—-2v’+vv’_l—v’2
R > o EF' E? (44.8)

and A is Expression (43.11).

If 1n an 1sotropic plate a rigid core has been soldered in,
for it

- Cg=Y3, /= 0.

(44.9)

With aéj = o Eq. (U4.5) goes over to Eq. (39.21) given pre-
viously for a plate with an aperture without core.

Calculations for a veneer plate with rigid core show that
the stress o, distributed along its contour is almost uniform, as
it varies on{y between 1.32 p and 1.37 p, and the tangential
stress is small, it does not exceed 0.03 p; the maximum 0, which

is equal to 1.37 p, is at the same time the maximum stress for the
whole plate. In the case of an elastic core whereau==2ﬁy the dis-
tribution of the stress o, on the contour is also almost uniform;

the value of (¢)m: 1s equal to 0.81 p and T g does not exceed 0.01
p . . J
The 94 stress distribution pattern along the edge of the ap- |

erture 1s a veneer plate with rigid and elastic core and without

core is shown in Fig. 101; the =xz-axis is directed along the fibers
of the sheet.
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Fig. 101. 1) Elastic core; 2)
rigid core; 3) no core.

The numerical values of o, (in fractions of p) are compiled

in Table 3. ¢
TABRLE 3
Stresses oe at the Points of
‘ the Contour of the Aperture
- .} (8 a0asx p)
oo
) "‘::;:“ yanpyroc 21po uOu 2aps
0 0,05 1,54 3,44
15 0,46 1,31 2,38
kY 0,84 1,09 1,41
45 0,96 1,02 1,09
60 0,93 1,04 1,23
75 0,65 1,22 2,18
90 0,10 1,56 4,04

1) (in fractions of p); 2) rig-
id core; 3) elastic core; 4) no
core.

The maximum stress in a plate with elastic core is equal to

1.56 p and in a plate with an aperture and no core in i1t, it is
equal to 4.04 p.

A more complex stress distribution pattern is obtained when
the plate is extended or compressed in two directions by forces
of different intensities.
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Let us give formulas for the str

esses 9, and Tre on the con-
tour of a rigid core in a plate which is compressed in the princi-
pal direction of z by the forces p, but when it cannot expand in
the transverse direction (Fig. 102):

=5 {1t L n sy
+[1 S El' (kn — & - v,)]cos 20},
P

w (44.10)
l‘ l .

" Tpp == 2 [l — v, —}—-g— (kn —k —}? “x)] sin 20,

é Here g is a quantity determined according to Eq. (43.13) and

'i -1 — v

| b= (44.11)
..
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